

Precision Spray Nozzles and Engineered Solutions for the Chemical Industry

PROCESS OPTIMIZATION WITH NOZZLE TECHNOLOGY

On the one hand every company needs to develop and constantly optimize its production processes. In automated systems, even minor discrepancies can provide optimization opportunities. On the other side processes in the chemical industry are extremely complex and mutually dependent, each adjustment extends far beyond its immediate scope. That's why for over 135 years, Lechler provides nozzle and spray technology that always involves the understanding of all the processes involved.

As early as when his trading company was founded in 1879, Paul Lechler believed in chemistry. Initially the main focus was on technical products, machine oils and wood preservatives, and in 1905 the company gained exclusive sales rights to the protective coating Inertol®. By 1919 he had added his self-produced protective coatings to this portfolio. Later, our company's focus shifted from chemical production to application and atomization of liquids. In 1961,

all chemical products were finally combined in a separate company.

But nevertheless, chemistry kept playing a major role in our company. Today Lechler offers a wide product range for the optimization of technical processes. Throughout our history, chemistry has played a major role in our company. Over the course of many decades, this gave rise to a unique understanding of spraying and atomization processes.

Lechler is proud of a long history in the United States

Lechler can look back on a long and successful history in the United States. In 1975 Lechler purchased the Spray Engineering Company, manufacturer of Spraco spray products. Recognizing that Spraco is and has been an established name in the spray nozzle business, Lechler continues to make many Spraco products today.

We are familiar with a wide range of applications at various pressures, temperatures and atmospheres. The following pages will provide you with several examples of this.

1879

Company founded by Paul Lechler

1893

Patent for liquid atomization

1962

Sales offices set up in Germany

1978

Expansion into the USA, followed by further countries

COMPETENCE – THE ADVANTAGE OF MULTIPLE PERSPECTIVES

CUSTOMER ADVANTAGES

Wide product range

Service

Experience

Custom made solutions

Process optimization

Process reliability

Cost savings

Maximum precision and highly reproducible spray patterns – that's what Lechler nozzle and spray solutions stand for.

Today we not only supply a unique selection of readily available standard nozzles, but are also prepared, to develop individual solutions customized to your needs. We would also be very pleased to advise you in person about how you can make your own processes even more efficient.

Our competence

Lechler is world leader in nozzle and spraying technology. Our products and solutions are used worldwide in an extremely wide range of sectors – including the chemical and process industry.

Our application engineers are familiar with practical use from many successful applications, and are therefore competent partners in the development and realization of exemplary solutions.

This know-how combined with our sophisticated technical achievements in research, design and production, provides you with the security needed for safe and reliable plant operation.

Take us at our word and let's discuss your process needs in an obligation-free consultation.

Content	Page
Applications	4-21
Engineered solutions for process solutions	22-23
Nozzle lances and injectors	24-27
Lechler pump and control skids	28-29
Lechler mist eliminators	30-33
CFD analysis	34-35
Measuring technology	36-37
Precision nozzles	38
Spillback nozzles	39
VarioJet nozzles	40
Laval nozzles	41
Twin-fluid nozzles	42-43
Hollow cone nozzles	44-48
Full cone nozzles	49-64
Cluster head nozzles	65
Deflector-plate nozzle	66-67
Rotating cleaning nozzles	68-78
Quality with a system	

1988

Environmental Technologies division founded

1995

Production, sales and administration in Metzingen

2010

Opening of the new 13,000 m² production hall in Metzingen

2016

Opening of the new Development and Technology Center in Metzingen

LECHLER NOZZLES AND ENGINEERED SOLUTIONS – FROM THE WELL TO THE REFINERY

Whether pinpoint precision or broad coverage – spray solutions from Lechler perfectly support your processes at any point. Thanks to our profound process understanding Lechler is far more than just a nozzle manufacturer. In fact, we can help to optimize the efficiency of a large number of your processes. E.g. in the petrochemical industry from the well to the refinery.

LECHLER NOZZLES AND ENGINEERED SOLUTIONS -AT HOME ALONG THE ENTIRE PROCESS LINE

Intense heat, high pressure, corrosive agents - every aspect of our nozzles has to be well defined right from the beginning in order to maintain the ultimate precision. This begins with the internal dimensions and doesn't end at the choice of the material. After the design phase every nozzle is rigorously examined in our test facilities. This way, we can ensure that the spray patterns of our nozzles match perfectly with the needs of your processes.

THIS IS WHERE YOU FIND YOUR ANSWER

The variety of different products synthesized and processed by the chemical industry is enormous. The same is true for the involved processes. Most of them are widely used and well understood. Others were specially developed and require extreme ambient conditions, occasionally customized to single reaction vessels.

Lechler supplies you in both areas with state-of-the-art nozzles and spray technologies.

We would be happy to examine the possibilities available to us for developing the optimum atomization nozzle to suit your needs – custom made and in close collaboration with you. Please note the production related delivery times and costs for the nozzles presented here.

Customized products and solutions ■ Tailored to your needs

■ Extensive consultation

■ Individual design and process support

For most applications, our precision spray nozzles will provide excellent results.

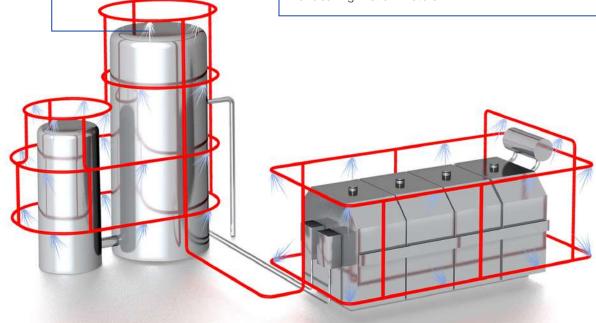
These parts have not only been meticulously designed but also have stood the test of time. Thanks to large-volume production, they are readily available at a reasonable price for the various applications in chemical-related applications. In this brochure you'll find our most commonly used products.

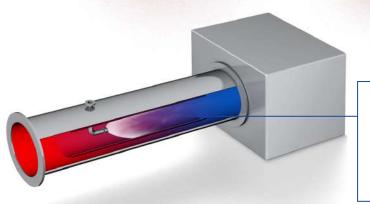
■ Thousands of standardized nozzles

■ Tried and tested

■ Great value for money

■ Short delivery time

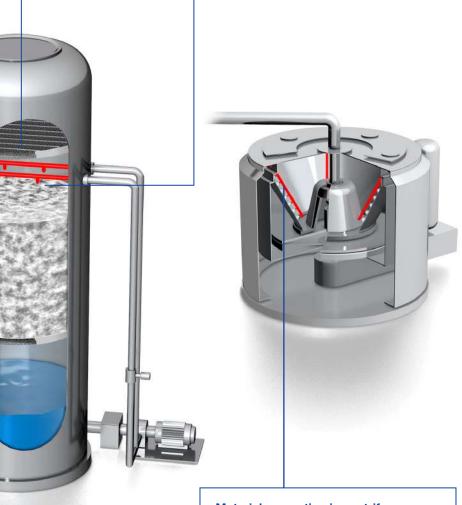

LECHLER NOZZLES AND ENGINEERED SOLUTIONS ARE USED IN MANY FIELDS IN THE CHEMICAL INDUSTRY


Tank sprinklers and fire protection

For cooling and sprinkling tanks and systems, it is extremely important to spray the entire object with water on all sides or to provide an even water film on the object. The narrowest cross section of the nozzles should be ≥ .24 in (DIN 14495). **Tongue-type nozzles** and **full cone nozzles** are frequently used.

Mist eliminators

Droplets can be carried along in the gas flow. Lechler **mist eliminators** remove droplets from the gas flow in order to prevent down-stream measuring devices from being affected. Special **full cone nozzles** are available for cleaning mist eliminators.



Gas cooling (Quenching)

In gas cooling, a liquid is added via nozzles that, under some circumstances, evaporates completely and thereby absorbs the thermal energy of the gas. Complete evaporation requires very fine droplets which can be produced with **hollow cone** or **twin-fluid nozzles**.

Absorption (Gas washing)

If the waste gas is to undergo absorption, Lechler full cone, hollow cone, or cluster nozzles are used. It is of crucial importance here to create a large specific reaction surface. The efficiency of the process can be decisively enhanced by making the right nozzle selection and having an optimum nozzle arrangement.

Material separation in centrifuges

Centrifuges are used to separate materials. Full cone and flat fan nozzles are used for this purpose to spray water on and wash out the material that is to be removed.

Examples engineered solutions

Mist eliminators

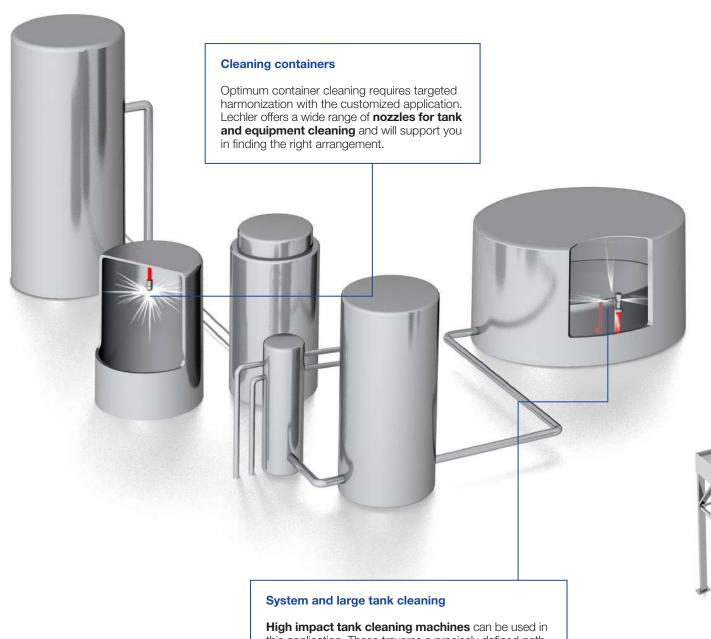
- Arrest finest droplets (<10µm)
- Little pressure loss■ For high flow rates

Nozzle lances and injectors

- Optimal spray placement
- ☐ Individual adapted
- Several options

Examples spray nozzle solutions

Full cone nozzles - series 490


- Non-clogging design
- Stable spray angleParticularly even spray

Twin-fluid nozzles

- Very fine droplets
- Smallest flow ratesAtomizing viscous liquids

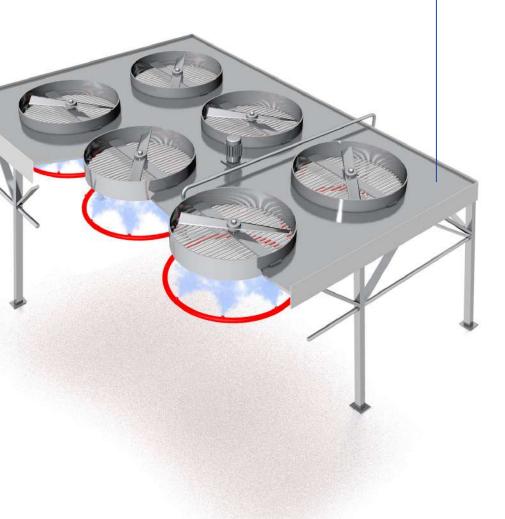
LECHLER NOZZLES AND ENGINEERED SOLUTIONS ARE USED IN MANY FIELDS IN THE CHEMICAL INDUSTRY

High impact tank cleaning machines can be used in this application. These traverse a precisely defined path with **gear-controlled solid stream nozzles**. This gives them a great range. In smaller containers and systems, the precision jets can remove even persistent dirt.

Examples engineered solutions

Tank lances

- Fully customized tank lance
- Different materials
- Different connection types


Spray headers

- Fully customized spray headers
- Different materialsTwin-fluid nozzles possible

Nozzles for air cooling and humidification

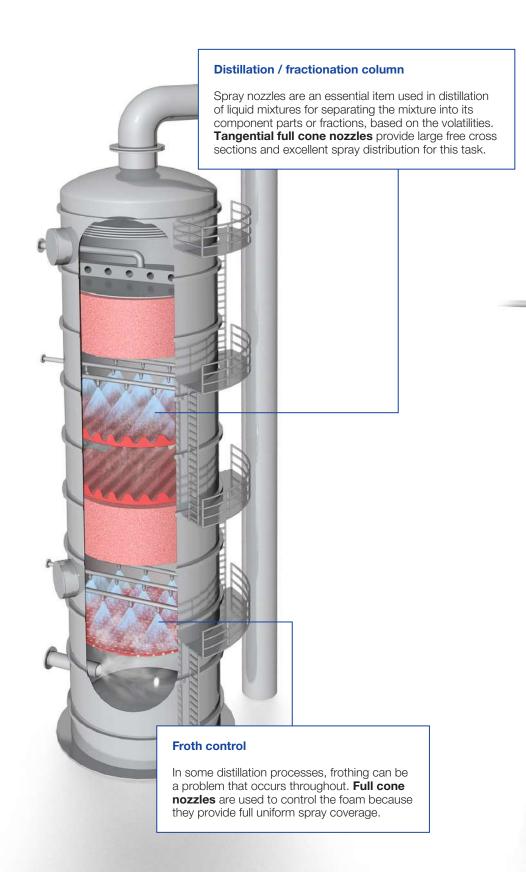
The thermodynamic processes of evaporation are normally applied in air cooling and humidification. This requires fine droplets that are injected directly into the air/gas flow by hollow cone or cluster nozzles. Producing the suitable droplet size and even distribution over the intake channel are particularly important here.

Examples spray nozzle solutions

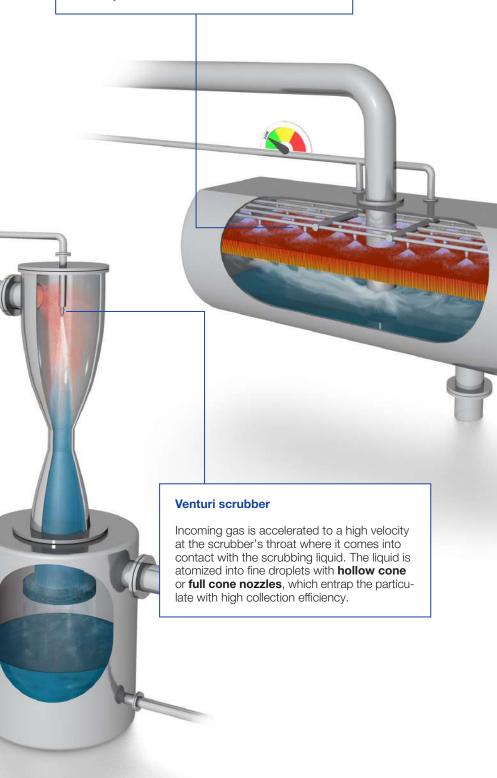
High impact tank cleaning machine series 5T2 / 5T3 / 5TB / 5TM

- Powerful solid jets highest impact
- For persistent soil
- Robust and proven

Free spinning tank cleaning nozzles series 569


- Popular and proven■ Effective flat jets■ ATEX-approved

Cluster nozzles – series 502 / 503


- Full cone like
- Small droplets

LECHLER NOZZLES AND ENGINEERED SOLUTIONS ARE USED IN MANY FIELDS IN THE CHEMICAL INDUSTRY

Steam condenser sprays

These types of heat exchangers convert steam from its gaseous state to a liquid state by using **full cone nozzles**. These nozzles provide good spray coverage for the large area with the greatest pump efficiency.

Examples engineered solutions

Nozzle lances and injectors

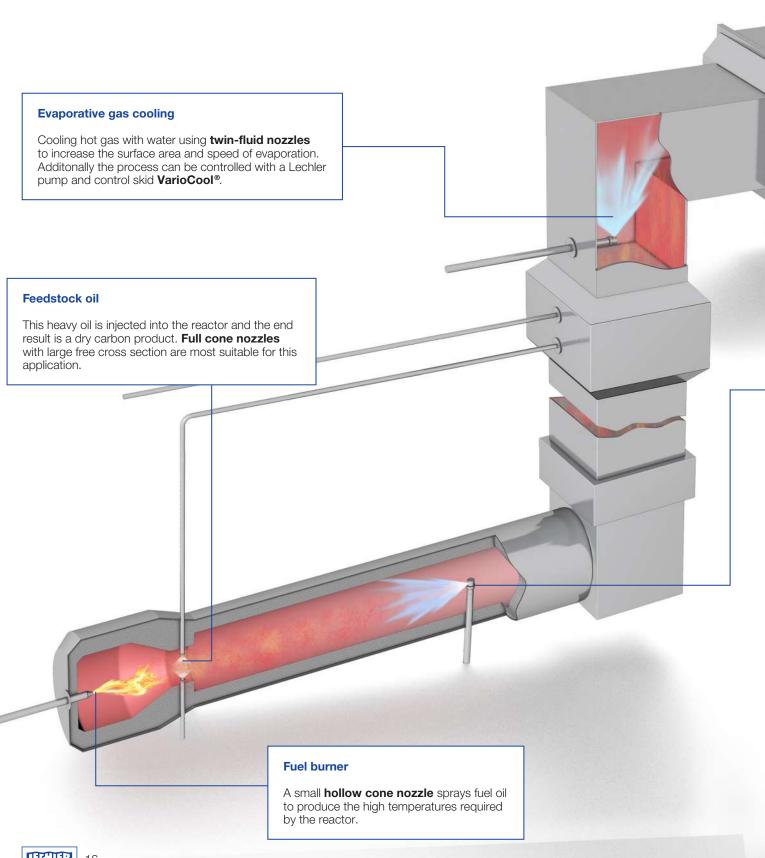
- Optimal spray placement
- Individual adapted
- Several options

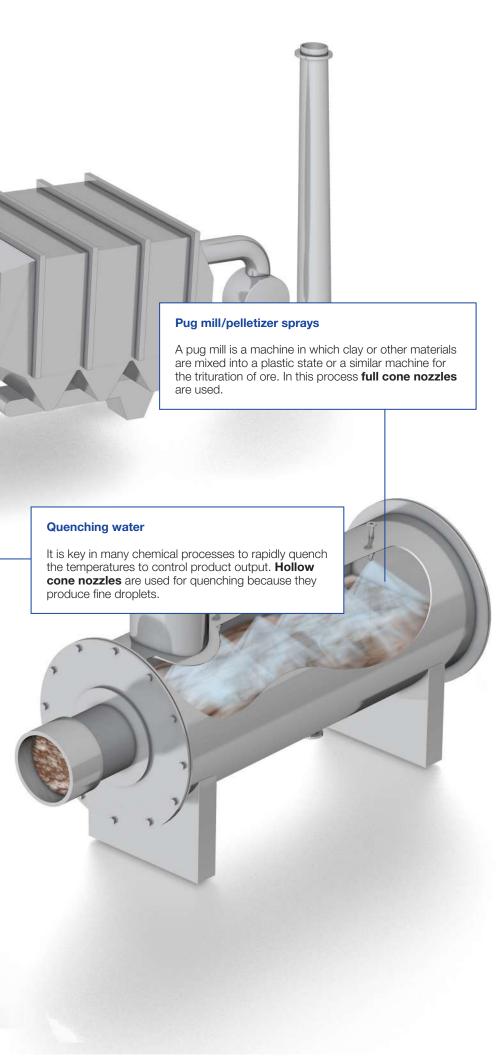
Pump and control skid units

- High-quality components
- Tested quality
- Perfectly tailored solution

Examples spray nozzle solutions

Tangential full cone nozzles – series 422 / 423


- No swirl insert
- Non-clogging
- Stable spray angles


Full cone nozzles - series 403 / 405

- High flow rates
- Even spray distribution
- Big droplets

LECHLER NOZZLES AND ENGINEERED SOLUTIONS ARE USED IN MANY FIELDS IN THE CHEMICAL INDUSTRY

Examples engineered solutions

Nozzle lances and injectors

- Optimal spray placement
- ☐ Individual adapted
- Several options

Pump and control skid units

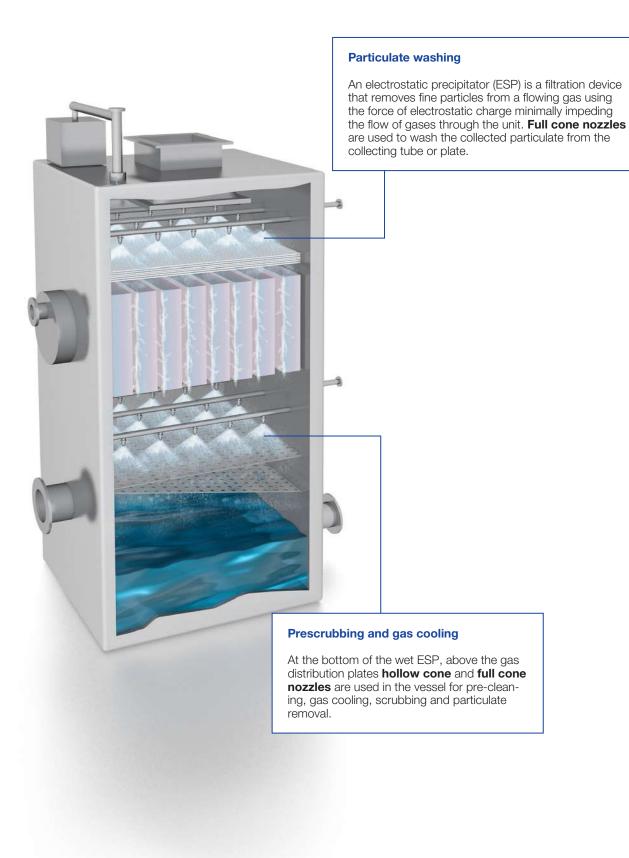
- High-quality components
- componentsTested quality
- Perfectly tailored solution

Examples spray nozzle solutions

Hollow cone nozzles – series 214 / 216 / 218

- Small droplets
- Low flow rates

Twin-fluid nozzles – series 170 / 180


- Efficient atomization
- Extremely fine atomization
- Large free cross sections

Twin-fluid nozzles - VarioJet®

- Internal mixing
- Innovative designVery fine droplet
- Very fine droplet spectrum

LECHLER NOZZLES AND ENGINEERED SOLUTIONS ARE USED IN MANY FIELDS IN THE CHEMICAL INDUSTRY

Water washing of salts

These injectors use full cone nozzles, which are used to scrub salt-forming contaminants from preflash and atmospheric tower overhead systems before they react and cause corrosion.

Examples engineered solutions

Mist eliminators

- Arrest finest droplets (<10µm)
- Little pressure loss
 For high flow rates

Nozzle lances and injectors

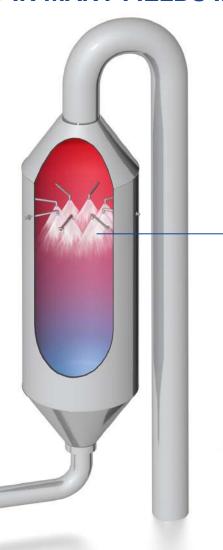
- Optimal spray placement
- ☐ Individual adapted
- Several options

Spray headers

- Fully customized spray headers
- Different materials
 Twin-fluid nozzles possible

Examples spray nozzle solutions

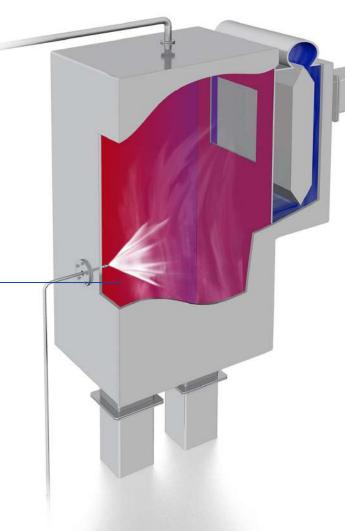
Full cone nozzles - series 490


- Non-clogging design
- Stable spray angleParticularly even spray

Hollow cone nozzles series 214 / 216 / 218

- Small droplets
- Low flow rates

LECHLER NOZZLES AND ENGINEERED SOLUTIONS ARE USED IN MANY FIELDS IN THE CHEMICAL INDUSTRY



Gas cooling tower

Precise cooling and conditioning of hot flue gases create stable outlet conditions for the safe and efficient operation of downstream plant components. Lechler is offering a wide range of **engineered solutions** to control the outlet conditions of a gas cooling tower.

SNCR NOx reduction

The selective non-catalytic reduction (SNCR) is an industrial technique for NOx reduction. **Twin-fluid or flat fan nozzle lances** spray fine droplets of urea or aqueous ammonia directly into a furnace.

NOx reduction with SCR

With the selective catalytic reaction (SCR), achieving a high separation efficiency is possible only with the aid of a catalyst. Such a solution requires special precautions to keep the efficiency high and catalyst waste low. The reagent is added immediately before the catalyst using twin-fluid nozzle lances in a temperature window appropriate to the reaction.

Examples engineered solutions

Nozzle lances and injectors

- Optimal spray placement
- ☐ Individual adapted
- Many options

Pump and control skid units

- High-quality components
- Tested quality
- Perfectly tailored solution

Examples spray nozzle solutions

Spillback nozzles

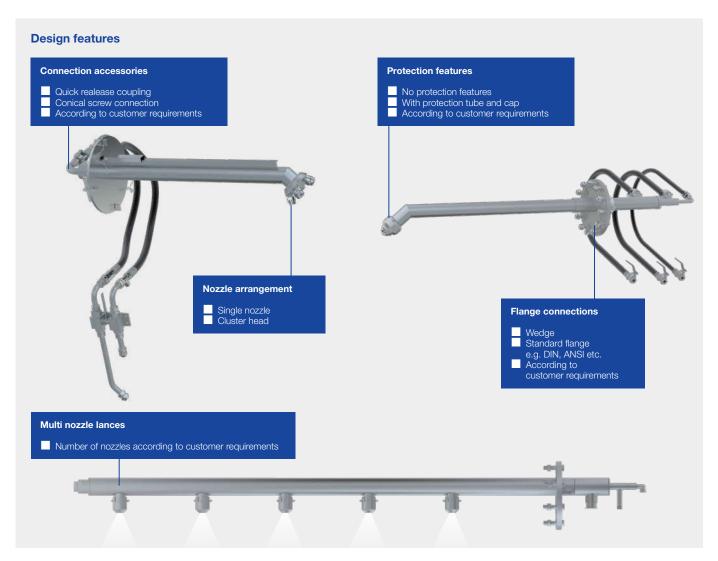
- Fine hollow cone
- Constant pressure
- No compressed air

Twin-fluid nozzles - Laval

- Fine full cone
- Droplet size and spectrum can be adapted
- For high temperatures

ENGINEERED SOLUTIONS FOR PROCESS SOLUTIONS: SOPHISTICATED SOLUTIONS FOR ADVANCED APPLICATIONS

If you are breaking new ground there is no standard solution available. But that's no problem. With our decadelong experience we are able to develop customized nozzles, spray systems and mist eliminators on short hand. Let's talk and find your perfect solution.


Nozzle Lances and Injectors

CFD Analysis and Testing Capabilities

NOZZLE LANCES AND INJECTORS FOR HIGHEST SPRAY ACCURACY

Lechler nozzle lances

ensure optimal spray placement and alignment in flue gas ducts. The choice of nozzles and the consideration of local conditions and process-related matters mean they can be individually adapted to the respective requirements.

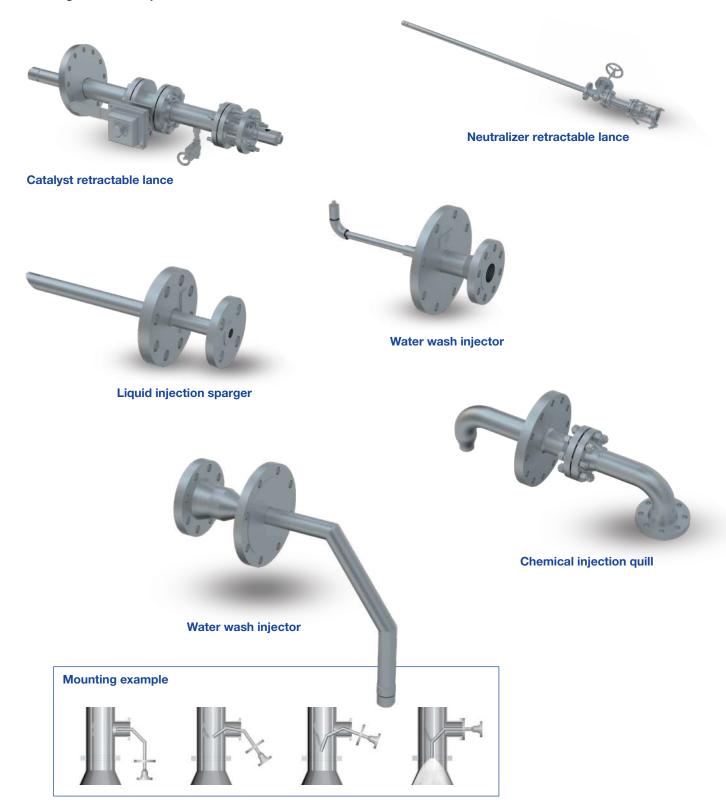
The nozzles themselves have a low-maintenance design and can be quickly cleaned or exchanged with minimal effort.

The robust, high-quality stainless steel construction ensures a high degree of functional reliability. Lances are available in a variety of materials to suit specific process requirements.

Lechler nozzle lances are available with many options, including but not limited to:

- Protection tube to increase the service life in case of higher temperatures, high dust loads and aggressive gases, with barrier air as an option.
- Wedge flange, standard flange and special flange in accordance with customer requirements
- Guide rail to facilitate lance installation

- Shifting device to change the insertion length – with or without gas tight sealing
- Expansion joint or stuffing box for expansion compensation at high temperatures
- Assembly connecting piece with flange connector for welding onto flue gas duct
- Further special customizations including wear protection, insulation, water cooling or coating
- Pre-assembled accessory kits for process media connections (e.g. quick release couplings, shut-off ball valves, strainers)


Lechler nozzle lances are manufactured in line with ultramodern production processes and according to the state of the art.

Material

Lances are manufactured from stainless steel (316/316L) as standard, but depending on requirements can also be made of chemical and high-temperature resistant materials.

Accessories are available in galvanized steel or stainless steel and the hoses are available in rubber or stainless steel.

Meeting customer requirements

Nozzle lances and injectors

Taylor made solutions

Lance injector type

Material and test requirements and standards

Connection type and features

Hydraulic

Twin-fluid air/liquid

Steam

Material Selection

- Stainless Steel 316L
- Hastelloy
- PP, PVC
- And many more

Code Compliance

- ASME B31.1 Power Piping code
- Metallic industrial piping: DIN EN 13480
- Unfired pressure vessels: DIN EN 13445
- ASME B31.3 Process Piping code
- Welder Performance Qualification Records per ASME BPVC section IX
- Qualification test of welders: DIN EN 287

Testing

- ANSI and ASTM testing
- Non-destructive testing Penetrant testing: DIN EN ISO 3452
- Hardness
- Hydrostatic pressure test:
 Pressure Equipment Directive 2014/68/EU,
 DIN EN 13480-5 and DIN EN 13445-5
- Spray and flow testing
- Phase Doppler Anemometry (PDA) measurement system
- Magnetic particle inspection: DIN EN ISO 17638
- Positive Material Identification

Flange connections

- Wedge
- Standard flange e.g. DIN, ANSI etc.
- Special flange according to customer specification

Additional features

- Shifting device to change the insertion length – with or without gastight sealing
- Expansion joint or stuffing box for expansion compensation at high temperatures
- Pre-assembled accessory kits for process media connections (e.g. quick release couplings, shut-off ball valves, strainers)
- Further special customizations including wear protection, insulation, water cooling or coating
- Assembly connecting piece with flange connector for welding onto flue gas duct
- Guide rail to facilitate lance installation

Injector/lance arrangement

Nozzle type

According to customer requirements

- Spray directionInsertion lengthSingle nozzle
- Multi-nozzle arrangement
- Cluster head design

PUMP AND CONTROL SKIDS A PERFECTLY TAILORED SOLUTION

Our pump and control skid units for regulating the flow rates of water and atomizing air are individual customerspecific solutions. Based on the requirements in each case, our first step is to design an overall concept and select the best components in order to create a perfectly tailored solution.

First-class engineering

To perform our engineering, we determine all relevant parameters and define the plant's design. This includes determining the nominal widths and pressure levels as well as designing the pumps and control valves. We draw up the P&I diagram and make detailed equipment and signal lists as an option. Of course, the project is fully documented to ensure that technology and processes can be quickly traced even after years of use.

High-quality components

An exact knowledge of the characteristic properties of our nozzles is key here. Only a complete system that is coordinated to how the nozzles function and operate will ensure smooth and economical operation of the gas cooling system. Unexpected failures can quickly lead to plant stoppages and costly production outages. This is why we fit our pump and control skid units with high-quality components from well-known manufacturers as standard and the most important functional components are even realized in redundant design.

The components are interconnected with pipes and mounted on a stable base frame with eyelets for crane transportation, at the same time ensuring that all components for operation and maintenance are arranged in an easily accessible manner.

Tested quality

The design (e.g. dimensioning of nominal widths) and production are in line with the latest state of the art and comply with all relevant standards. They are equally subject to the Lechler quality management system certified to DIN EN ISO 9001, as is the final acceptance. Before delivery, the pump and control skid unit undergoes a pressure and tightness test and is checked by our experienced engineers. This will avoid any problems during commissioning.

Control concept from the nozzle specialist

Numerous installations of VarioCool® systems, years of commissioning experience, plus expertise in nozzle technology all contribute to the constant improvement and optimization of Lechler control systems. By installing a control solution from Lechler you will benefit considerably from this wealth of experience. The flexible and fully automatic concept can be perfectly adapted to your process. You will have start-up and shut-down scenarios and dynamic process conditions under perfect control with our solution.

Option packages for our VarioCool® pump and control skid

Electrical wiring of the components:

Junction box

All components except the pump motors are wired to a junction box within the pump and control skid unit.

This assures that the customer has a central connection point for all electrical components and measuring devices for further processing in the higher-level control.

Control cabinet with complete PLC

All components including the pumps are wired to a control cabinet. The control cabinet is integrated into the base frame of the pump and control skid unit.

The complete injection control is tested in accordance with valid electrical standards and regulations and allows all relevant process parameters to be visualized over a control panel on the control cabinet.

Specific configuration and extensive testing make commissioning much faster. Communication and the exchange of signals (setpoint, plant status, error messages) with the customer's logic system is carried out via PROFIBUS or PROFINET.

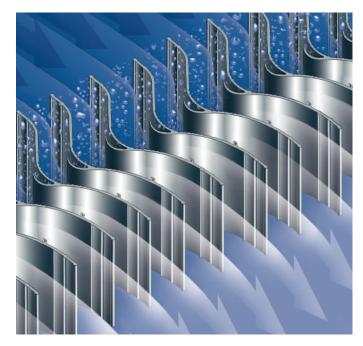
The control has several modes of operation such as automatic mode and manual mode for tests during plant downtimes. In the event of faults, our engineers can quickly perform a remote diagnosis via the installed modem without the need for an on-site visit.

Talk to us

Customer requirements are different. Which is why standard solutions do not always make sense. Speak with us and let us work together to find the best solution for your purposes.

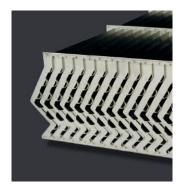
MIST ELIMINATORS WHEN PERFORMANCE COUNTS

Mist eliminators have played a vital role in many process operations and gas washing plants as functional elements that protect downstream installation parts, increase product yield or reduce energy consumption. They are now becoming even more important due to increasingly stringent environmental protection regulations that require a drastic reduction in the residual pollutant content.


This makes it necessary to use high-performance mist eliminators which are capable of separating even the finest droplets with a size of less than 10 microns, while at the same time minimizing pressure losses. This task requires effective separation systems with compact dimensions that can deal with high flow rates.

When designing and planning mist eliminators, it is necessary to have precise knowledge of the functional and performance data of the separation system, as well as an in-depth process understanding of the respective application.

Knowledge about droplet formation and droplet movement in a gas flow is essential to ensure fault-free operation of the mist eliminator. For more than 100 years, we have worked on detection, measurement and definition of droplets. It is therefore not a coincidence that Lechler nozzles and Lechler mist eliminators are now considered integral elements in process engineering.

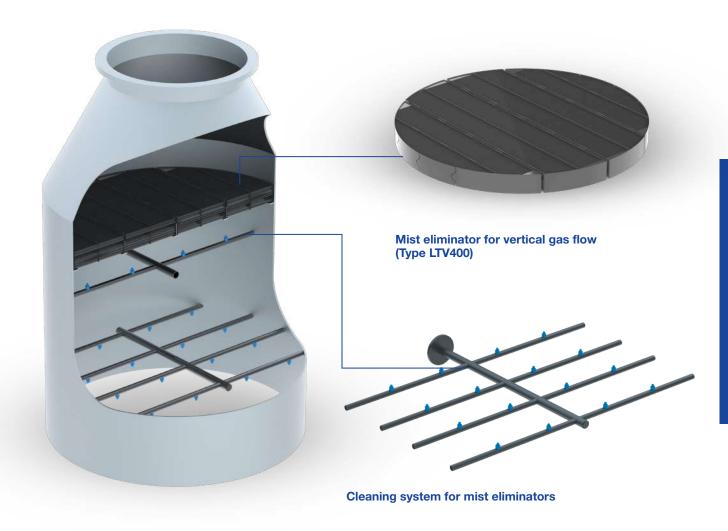

Each installation requires a specific mist eliminator design and construction. Design, construction and selection of the optimum Lechler mist eliminators are based fully on your requirements, specifications and drawings. That is why we do not offer standard solutions, but customize systems individually for your specific needs.

In order to guarantee accurate operation, materials must be used that are matched to the relevant variables of the installation in question. For this reason, Lechler offers a wide range of different materials – from stock.

The available materials include:

- Stainless steels in the grades 304 SS, 316L SS, 316Ti SS, 318LN SS, 904L SS, 254SMO SS as well as special alloys such as Hastelloy
- Plastics such as PP, PPTV, PE, PVDF

Talk to us

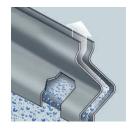

Do you know your process but are not sure which mist eliminator is best suited for your purposes? No problem. Based on your individual requirements, we will choose from a finely graded range of vane profiles with single or multiple deflection.

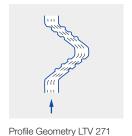
Lechler, Inc

445 Kautz Rd. St. Charles, IL 60174 Phone: (800) 777-2926 E-Mail: info@lechlerusa.com

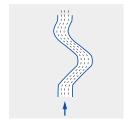
Mist eliminators

for vertical gas flow

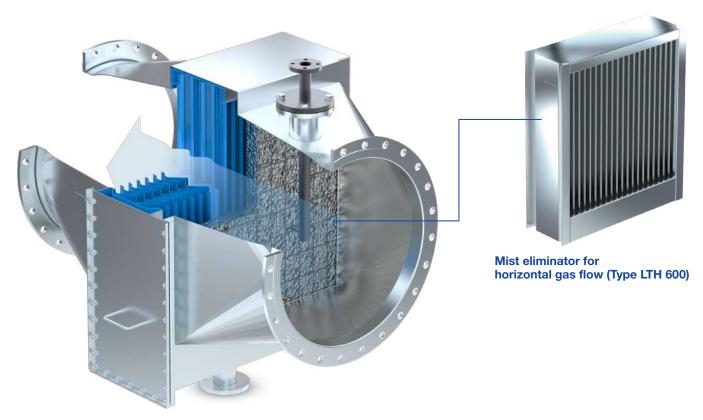



In vane-type eliminators with vertical gas flow, the **baffle vanes are** arranged horizontally or at a slight horizontal angle. The liquid that is separated at the profile forms a film which drains downwards in the opposite direction to the gas flow. This liquid film interacts with the opposing gas flow. At the bottom end, larger droplets are formed from the liquid film which then fall down.

Reliable operation - even under tough conditions


Lechler mist eliminators are characterized by the optimized-flow design. However, if the gas flows are heavily loaded with dust, deposits can occur under unfavorable conditions which impair the efficiency of the mist eliminators. In this case, an additional cleaning system helps to guarantee availability during continuous operation.

An arrangement that performs cyclical washing of the mist eliminators with full-cone nozzles has proven particularly suitable for this. This allows you to increase functional reliability, avoid encrustations and also ensure that your plant operates with optimum efficiency over long periods.

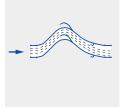


Profile Geometry LTV 300

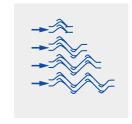
Profile Geometry LTV 400

Mist eliminators

for horizontal gas flow




Housing with mist eliminator for horizontal gas flow (Type LTH 600) and agglomerator

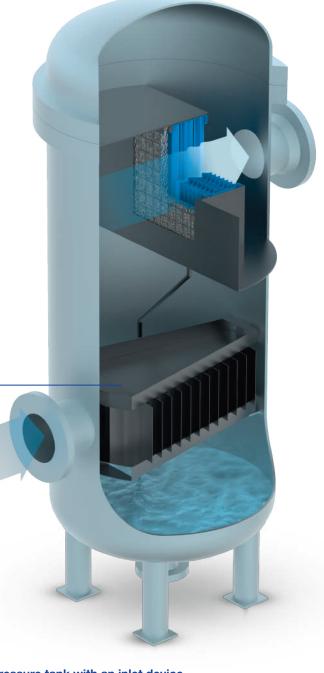

Vane-type separators for horizontal gas flow use different design features for secondary separation than vertical systems. In vane-type separators for horizontal gas flow, the separation vanes are arranged vertically to the gas flow so that the liquid runs down the baffles due to gravity. The creation of flow-calmed zones allows the liquid film to specifically drain in these areas without renewed contact with the gas flow. The fact that liquid run-off is assisted by the forces of gravity results in high-performance separation systems. Depending on the separator design, particularly

high flow rates are possible. The flow-optimized shape of the baffle vanes minimizes pressure losses. Based on your individual requirements, it is possible to choose from a finely-graded range of vane profiles with single or multiple deflection.

Profile geometry LTH 100

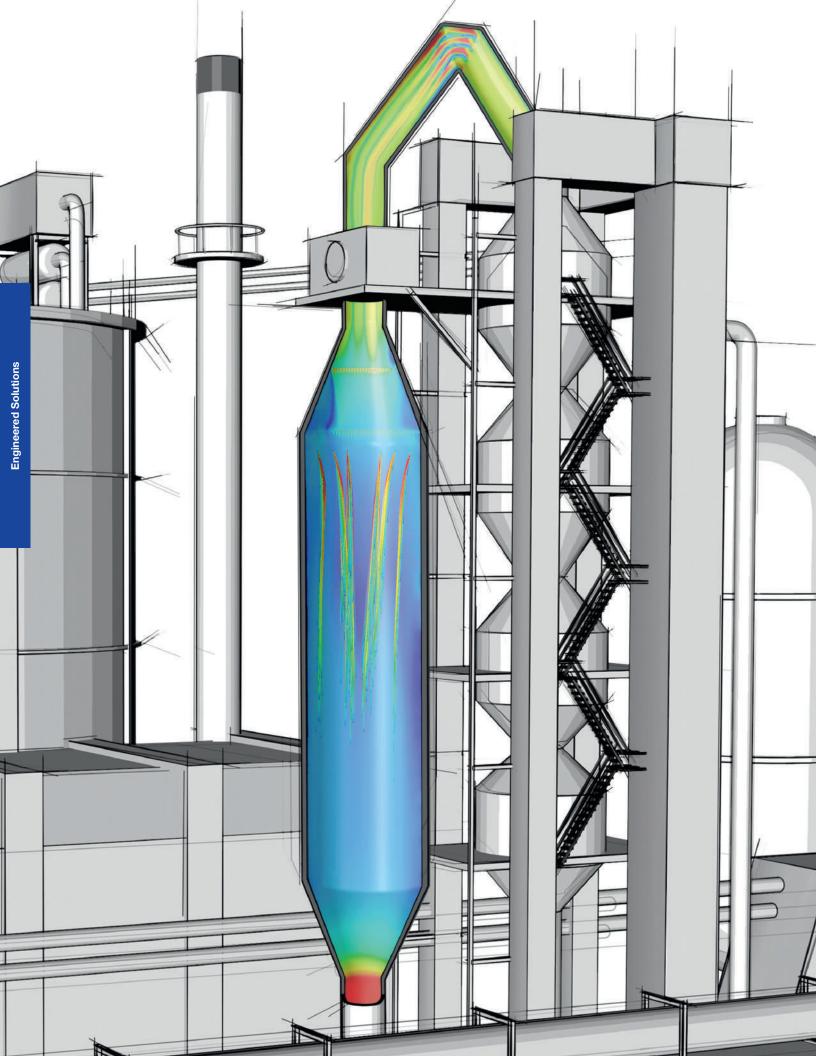
Profile geometry LTH 500

Profile geometry LTH 600


Extreme droplet separation

Finest droplets

In some applications, it is necessary to separate droplets that are significantly smaller than the limit droplet diameter of a vane-type mist eliminator. In these cases, we use fiber packs as agglomerators in combination with vane-type separators.


Large liquid volumes

Optimum pre-separation is necessary if there are liquid surges in the inlet. The Lechler Inlet Device (LID) separates large liquid quantities with maximum efficiency and thus optimizes the flow of the rising gas.

Pressure tank with an inlet device for separation of surge liquids

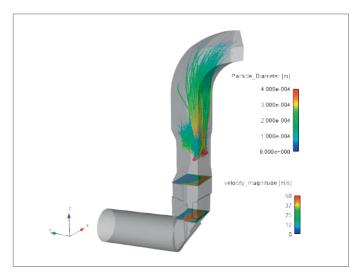
CFD ANALYSIS

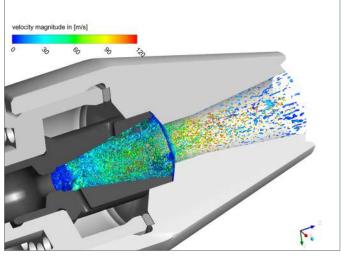
Fluid Dynamics simulation as a process optimization tool

No matter what the spray application may be, the goal is always to achieve the maximum effect with the minimum possible use of material, spray media and energy. It is therefore essential to have a detailed understanding of how spray mist is formed and propagated.

This is made possible by computer-assisted simulation of the flow processes of one or more media in static and dynamic environments, taking into account heat and mass transfer and almost every physical effect. These simulations incorporate our knowhow from many decades of nozzle development.

In the past, Fluid Dynamics was only an internal tool which helped us to develop nozzles faster and with greater precision. The completion of our high performance cluster with a computing performance of around 8.500 GFlops now allows us to offer our knowhow as a service.


We can simulate nozzle applications and processes individually for your environment and requirements. The aim is to make your spray processes working exactly how you want them to.


Our services:

- Simple flow field and pressure loss simulations with one or more gas/liquid in containers, pipes and fittings
- Full spray propagation in almost every environment including heat and mass transfer with the surrounding gases
- Calculation of the internal flow field in nozzles and prediction of the spray pattern as well as water distribution and spray characteristic close to the nozzle

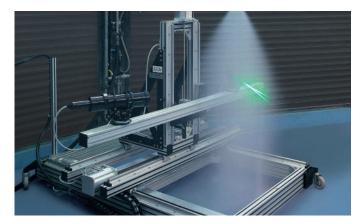
Your advantages:

- Maximum efficiency in
 - media consumption for nozzles and applications
 - geometric dimensions of the whole process
- through optimized
 - nozzle selection
 - nozzle operation (for efficient use of pumps, compressors and fans)
 - spray distribution
 - droplet sizes
 - optimized fluid flow upstream and downstream of the spraying process

MEASURING TECHNOLOGY HOW OUR RESOURCES HELP US ACHIEVE PRECISION

What we are doing before we do it

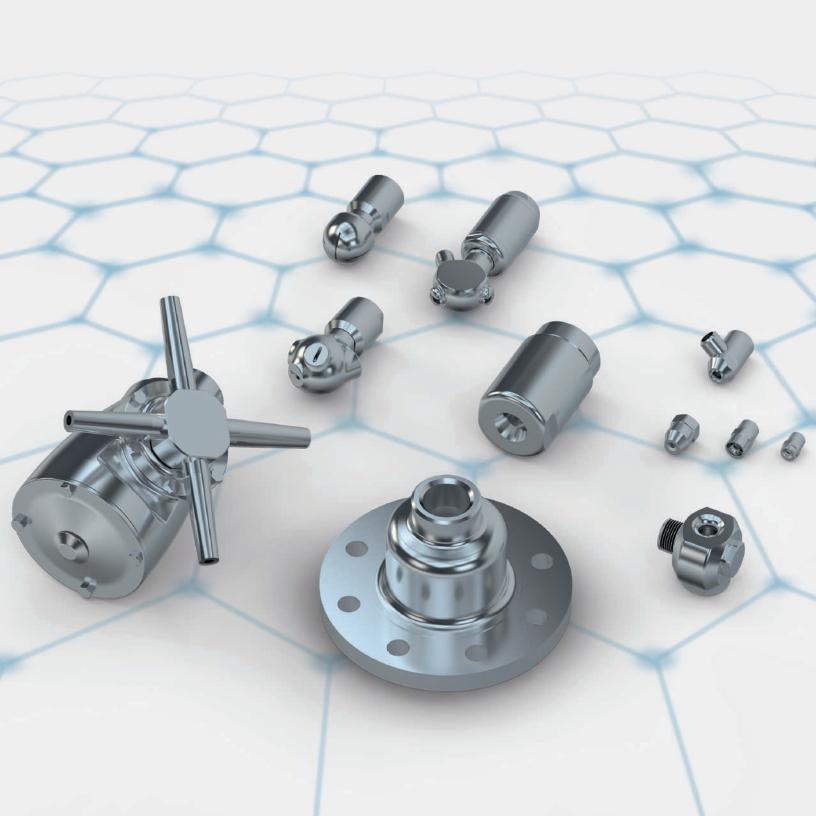
At Lechler, exact measurements have long been the basis for clearly defined spray characteristics. The data obtained in our laboratories form the foundation for any development and make it easier for our customers to choose nozzles for specific applications. This saves time, lowers costs and provides planning security.


Advanced technology

We have further expanded our research capacities by opening our own Development and Technology Center.

A highlight here is a laser-assisted phase doppler anemometer. As one of the most modern optical measuring procedures, it measures the velocity and the diameter of spherical droplets simultaneously and without contact. Using the data obtained, spectra can be reliably derived for particle size distributions and velocities. Measurements range from tiny water droplets in the micrometer region to very large droplets of around 8 millimeters.

These are performed with a high temporal and spatial resolution.


Individual positions in the spray can be automatically approached and measured with extremely high accuracy – in x, y and z directions.

PRECISION NOZZLES: UTMOST ACCURACY AND MAXIMUM AVAILABILITY FOR STANDARD APPLICATIONS

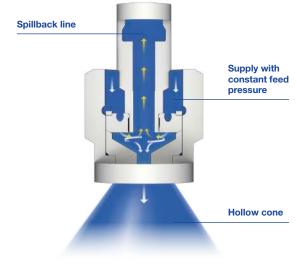
In the chemical industry there are innumerable applications that require the atomization of liquids of all kinds in different ways. The combination of all these parameters leads to thousands of different nozzles. At Lechler, we have them all. In this brochure, we present you with a selection of our most common nozzles used in chemical applications. If for some reason, you cannot find what you are looking for, please contact our experts to help you with finding the right nozzle for your application.

Spillback nozzles

Atomization without compressed air

Lechler spillback nozzles atomize liquids as a fine hollow cone.

This single-fluid nozzle works according to the pressure atomization principle. The water is sent to the nozzle with an almost constant feed pressure, irrespectively of the atomized flow rate.


The amount of liquid injected is adjusted via a control valve in the spillback line, whereby part of the flow is taken from the inlet flow rate and carried back to the tank. The maximum atomized flow rate is achieved with the control valve closed.

Uniform and fine liquid atomization is achieved across the entire control range.

If the volume to be atomized is distributed over cluster heads with up to six small spillback nozzles, this leads to an improvement in the droplet quality compared to a single nozzle.

Thanks to the cluster heads' total spray angle of about 120°, the distribution of the water volume over the entire channel cross-section improves. The number of lances can be reduced in this way. We also recommend this option when upgrading existing gas cooling towers in particular.

Scheme of the spillback nozzle

Use:

■ Gas cooling in mediumsized and large gas cooling towers

Properties

Spray angle of the individual nozzles 90° as hollow cone

High turn-down ratio

Low operating costs

as no atomizing air required

Even and fine liquid atomization

over the entire control range

Execution

as single or cluster nozzle lances possible

Typical pressure range of 508 psi, g in the supply

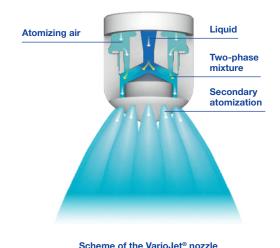
line at the nozzle

VarioJet® nozzles

Twin-fluid nozzles with low air consumption despite large outlet angle

Lechler VarioJet® nozzles

atomize according to the principle of internal mixing. With this twin-fluid nozzle, the water is fed in axially via a bore hole.


After arriving at the cone tip, the liquid is split up into a thin liquid film. This thin liquid film is split into finest droplets by the atomizing air in the mixing chamber. The resulting two-phase mixture is then atomized a second time when exiting via several bore holes arranged in a circular pattern.

Thanks to the innovative design of the nozzle, a spray with a large outlet angle is achieved. This is characterized by an even liquid distribution as well as a fine droplet spectrum with a low specific air consumption.

The fineness of the droplet spectrum is decisively influenced by the air/liquid ratio and by the pressure level of the two fluids. As a general rule: the higher the air/liquid ratio and the higher the pressure level of atomizing air and liquid is, the finer the droplet spectrum.

The large free cross-sections in the nozzle keep the risk of clogging and the maintenance effort to a minimum.

Use:

 Gas cooling in gas cooling towers as well as gas-bearing pipes (ducts)

Properties

Large spray angle 60°, 90° for good coverage of the crosssection of the duct

High turn-down ratio up to 20:1

Adjustment of the droplet spectrum by changing the air/fluid ratio

Low air consumption

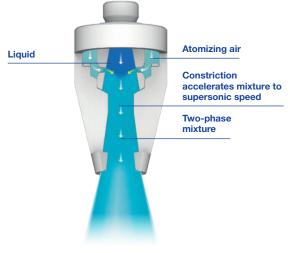
Clog-resistant thanks to large free cross-sections without internal fittings

Typical pressure range Liquid 15-130 psi, g Atomizing air 15-87 psi, g

Laval nozzles

Twin-fluid nozzles for a wide droplet spectrum in special applications

Lechler Laval nozzles


atomize liquids as a fine full cone. These twin-fluid nozzles work according to the supersonic principle.

A dual-phase mixture is created from atomizing air and liquid in the mixing chamber inside the nozzle. The shape of the nozzle causes this mixture to be accelerated to supersonic speed, resulting in an extremely fine atomization of the droplets.

By changing the air/liquid ratio, the droplet size and the droplet spectrum can be adapted within a wide range. The large free cross sections of the nozzle also allow atomization of viscous or solids-laden liquids.

Choosing the right material prevents wear even where abrasive media are present, and enables use at high temperatures.

Use:

- Gas cooling in gasbearing pipes (ducts) and medium-sized and small gas cooling towers
- Injection of solids-laden water
- Introduction of lime water in the desulfurisation process
- Injection of aqueous ammonia or urea solution for the DeNOx process (SNCR/SCR)
- Chemical process engineering (spray dryers etc.)

Properties

Small spray angle 15°, suitable for small cross-sections and horizontal ducts

Very large turn down ratio of 20:1 (in some cases up to 40:1)

Adjustment of the droplet spectrum by changing the air/fluid ratio

Very fine droplet spectrum

Scheme of the Laval nozzle

Clog-resistant

thanks to large free cross-sections without internal fittings

Typical pressure range Liquid 15-87 psi, g Atomizing air 15-87 psi, g

Twin-fluid nozzles with internal mixing

Series 170 / 180

Efficient atomization by mixing liquid and gas.

- Internal mixing principle (Mixing chamber inside the nozzle combines a gas and a liquid to form an intensive dual-phase mixture)
- Extremely fine atomization with good regulating performance
- Large free cross sections
- Lower air consumption than with nozzles that mix externally
- Maintenance-free operation

Applications:

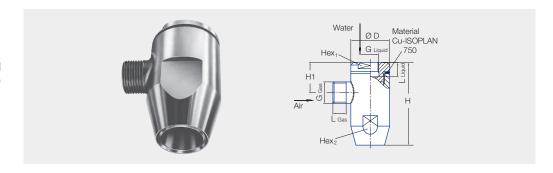
Gas cooling, air humidification, flue gas desulphurisation, spray drying, absorption

Liquid pressure:

14.5 - 72.5 psi

Air pressure:

14.5 - 72.5 psi


Regulating range up to max.:

1:30

Spray angle:

approx. 20°

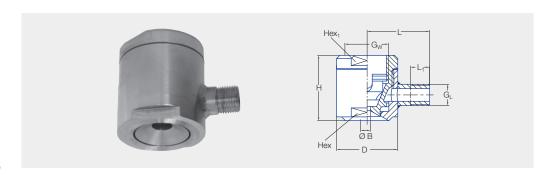
The nozzle's large free cross sections allow maintenance-free operation even when atomizing viscous and abrasive media with a high solid content.

Tuno					Dime	nsions (in.)				Weight (lbs.)
Туре	Н	H ₁	D	Hex₁	Hex ₂	G Liquid NPT	G _{Gas NPT}	L _{Liquid}	L _{Gas}	
180.641	1.9	1.1	.98	22	22	1/8	1/8	.38	.40	0.31
180.721	3.19	1.16	1.50	1-1/4	1-1/4	3/8	1/2	.55	.51	1.19
170.801	3.19	1.16	1.50	1-1/4	1-1/4	3/8	1/2	.55	.51	1.19
170.881	3.19	1.16	1.50	1-1/4	1-1/4	3/8	1/2	.55	.51	1.19
170.961	4.41	1.65	2.05	1-13/16	1-13/16	1/2	3/4	.71	.59	2.81

(Orderi	ng no).		Orif diam						,	Air pres	sure (ps	i)				
Type	Mat. no.		nection) 	(in	1.)		14.5			29			43.5				
	1 Y		ale NPT	1"	Ą	Water	Water psi	Water GPM	Air ft³/hr	Water psi	Water GPM	Air ft³/hr	Water psi	Water GPM	Air ft³/hr	Water psi	Water GPM	Air ft³/hr
180. 641	0	вв			.12	.17	11.6 13.1 18.9	.11 .26 .66	706 636 494	24.7 27.6 39.2	.16 .40 .92	1130 989 812	36.3 46.4 58.0	.21 .79 1.32	1519 1271 1130	45.0 66.7 84.1	.24 1.06 1.85	1942 1519 1307
180. 721	0	-	BF -		.15	.20	8.7 11.6 13.1	.13 .53 .92	1519 1307 1130	18.9 24.7 27.6	.18 .79 1.45	2331 1942 1730	31.9 39.2 45.0	.24 1.06 1.98	3037 2613 2260	43.5 53.7 60.9	.29 1.59 2.38	3849 3037 2790
170. 801	0	-	BF -		.08	.22	10.2 13.1 14.5	.26 .79 1.32	1413 1236 1130	21.8 26.1 29.0	.26 1.32 2.64	2048 1836 1695	31.9 37.7 43.5	.32 1.85 3.70	2825 2543 2225	46.4 52.2 58.0	.32 2.64 5.28	3708 3214 2931
170. 881	0	-	BF -		.11	.30	8.7 11.6 13.1	.26 1.32 2.11	2119 1942 1766	21.8 24.7 27.6	.32 1.85 3.43	3355 3178 2825	31.9 36.3 43.5	.40 2.64 5.02	4591 4167 3708	45.0 50.8 59.5	.48 3.96 7.40	6039 5438 5050
170. 961	0	-	- В	н .	.13	.37	8.7 11.6 14.5	.26 1.32 3.17	3320 3002 2543	20.3 24.7 27.6	.32 2.64 5.02	5474 4591 4061	31.9 37.7 43.5	.40 3.96 6.87	7416 6321 5368	43.5 50.8 59.5	.48 5.28 10.04	9712 7769 6992

Example Type + Material no. + Conn. = Ordering no. for ordering: 170. 801 + 1Y + BF = 170. 801. 1Y. BF

Twin-fluid nozzles Series 150



Fine liquid atomization by means of air or vapor.

- Liquid, air or vapor are supplied under pressure
- The air or vapor pressure must always be higher than liquid pressure
- A higher air-/water ratio leads to finer atomization

Applications:

Chemical process engineering, cooling processes, atomizing viscous liquids.

Туре	G _w BSPP	G _L BSPP	H [in]	D [in]	L [in]	L ₁ [in]	Hex [in]	Hex ₁ [in]	Weight 316Ti SS
150.005.17 - 150.013.17	G 3/8	G 1/4 A	1.5	1.10	1.28	.39	.94	.94	.31 lbs
150.032.17	G 1	G 3/8 A	2.05	1.89	1.93	.59	1.61	1.61	1.10 lbs
150.050.17 - 150.063.17	G 1 1/4	G 1/2 A	2.95	2.56	2.28	.59	2.17	2.17	2.98 lbs

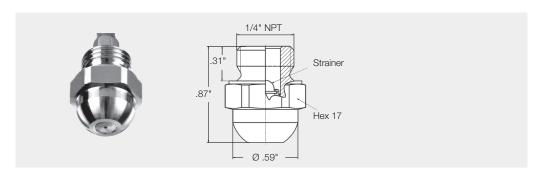
4	Ordering no		diam.	ØВ		(Gallons	Flow Per Minute		ıre (nsi)		(fi		Rate Pressure (ps	:i)
">	Type	Mat. no.				(Galloric	I CI IVIII IGR) at 1 1000	l (psi)		(11	1 / 1 11 / 41 / 41	1033410 (pc	n) I
Spray angle		17 ¹	(in.)	(in.)	5.0	7.5	10.0	14.5	22.0	29.0	14.5	29.0	43.5	58.0
20°-30°	150, 005	0	.04	.04	.04	.05	.06	.07	.09	.11	353	530	706	883
	150. 007	0	.08	.08	.11	.13	.15	.19	.23	.26	353	530	706	883
	150. 009	0	.16	.08	.27	.34	.39	.47	.58	.66	353	530	706	883
	150. 010	0	.14	.08	.44	.54	.62	.75	.92	1.06	353	530	706	883
	150. 013	0	.24	.08	.88	1.07	1.24	1.50	1.84	2.11	353	530	706	883
	150. 032	0	.31	.11	.88	1.07	1.24	1.50	1.84	2.11	1095	1660	2225	2825
	150. 050	0	.35	.19	1.76	2.15	2.48	2.99	3.68	4.23	2119	3178	4238	5297
	150. 052	0	.35	019	3.46	4.23	4.89	5.88	7.25	8.32	2119	3178	4238	5297
	150. 063	0	.59	019	6.91	8.46	9.77	11.77	14.50	16.64	3531	5297	7063	8829

 $^{^{\}mbox{\tiny 1)}}\mbox{We reserve the right to deliver AISI 316 or 316 Ti under the material no. 17.$

Example	Туре	+	Material no.	=	Ordering no.
for ordering:	150, 005	+	17	=	150, 005, 17

Axial-flow hollow cone nozzles

Series 220



Extremely fine, fog-like hollow one spray.

Applications:

Disinfection, humidification and cooling.

Nozzles of series 220 replace series 212 which are still available on request.

\$	C Type	rderin		Connection	diam.	O)	size er				Flow Rate				Spray Diam. D (in.)	Theoretical Spray Width
Spray angle		MSI 430F	1Y	Male 1/4" NPT	ia) Orifice d	i) Free (i) Passage	i) Mesh si () Strainer	30 psi	45 psi	liters per minute 5 bar	75 psi	100 psi	150 psi	300 psi	@ 72 psi H=4"	@ 72.5 psi (5 bar) H=100mm
60°	220, 004	0	0	ВС	.004	.004	.002	-	-	.013	.003	.004	.005	.007	4	100
	220. 014	0	0	ВС	.006	.006	.002	-	.004	.019	.005	.006	.007	.010	4	100
	220. 054	0	0	BC	.008	.006	.002	.004	.006	.027	.007	.008	.010	.014	6	140
80°	220. 085	0	0	ВС	.010	.010	.004	.007	.008	.040	.011	.012	.015	.021	6	140
	220. 125	0	0	BC	.014	.014	.004	.010	.013	.062	.016	.019	.023	.033	6	140
	220. 145	0	0	BC	.016	.016	.004	.014	.017	.082	.022	.026	.031	.043	6	140
	220. 165	0	0	BC	.018	.018	.004	.017	.021	.103	.027	.032	.039	.054	6	140
	220. 185	0	0	BC	.022	.014	.008	.022	.027	.130	.034	.041	.049	.069	6	140
	220. 205	0	0	BC	.024	.014	.008	.028	.034	.168	.044	.053	.063	.089	6	140
	220. 245	0	0	BC	.028	.020	.008	.044	.053	.261	.069	.082	.097	.138	6	140
	220. 285	0	0	BC	.035	.022	.008	.065	.080	.390	.103	.122	.146	.206	6	140

Example Type + Material no. + Conn. = Ordering no. for ordering: 220. 004 + 1Y + BC = 220. 004. 1Y. BC

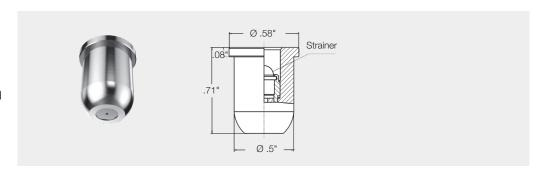
The integrated strainer avoids clogging of the nozzle and increases its service life.

* Materials

Mat. no.	Housing	Nozzle insert	Strainer
11	AISI 430F	AISI 430F	AISI 316L
1Y	AISI 316L	AISI 316L	AISI 316L

Axial-flow hollow cone nozzles

Series 226



Hollow cone nozzle for assembly with retaining nut. Extremely fine, fog-like hollow cone spray.

Applications:

Disinfection, humidification and cooling.

Nozzles of series 220 replace series 212 which are still available on request.

\$	Ordering		diam.	a)	size er				Flow Rate				Spray Diam. D (in.)	Theoretical Spray Width
Spray angle ≯	71	Material no.	(in.)	j Free (j Passage	j) Mesh si (C) Strainer	30 psi	45 psi	liters per minute 5 bar	75 psi	100 psi	150 psi	300 psi	@ 72 psi H=4"	@ 72.5 psi (5 bar) H=100mm
60°	226, 004	0	.004	.004	.002	_	_	.013	.003	.004	.005	.007	4	100
00	226. 004	Ö	.004	.004	.002		.004	.013	.005	.004	.003	.010	4	100
	226. 054	Ö	.008	.006	.002	.004	.006	.027	.007	.008	.010	.014	6	140
80°	226. 085	0	.010	.010	.004	.007	.008	.040	.011	.012	.015	.021	6	140
	226. 125	0	.014	.014	.004	.010	.013	.062	.016	.019	.023	.033	6	140
	226. 145	0	.016	.016	.004	.014	.017	.082	.022	.026	.031	.043	6	140
	226. 165	0	.018	.018	.004	.017	.021	.103	.027	.032	.039	.054	6	140
	226. 185	0	.022	.014	.008	.022	.027	.130	.034	.041	.049	.069	6	140
	226. 205	0	.024	.014	.008	.028	.034	.168	.044	.053	.063	.089	6	140
	226. 245	0	.028	.020	.008	.044	.053	.261	.069	.082	.097	.138	6	140
	226. 285	0	.035	.022	.008	.065	.080	.390	.103	.122	.146	.206	6	140

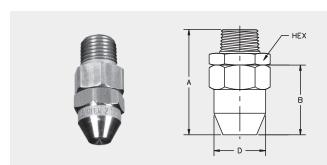
Example Type + Material no. = Ordering no. for ordering: 226.004 + 16 = 220.004.16

The integrated strainer avoids clogging of the nozzle and increases its service life.

* Materials

Mat. no.	Housing	Nozzle insert	Strainer
16	AISI 303	AISI 430F	AISI 316L

Axial-flow hollow cone nozzles


Series 214 / 216 / 218

Fine, uniform hollow cone spray.

Applications:

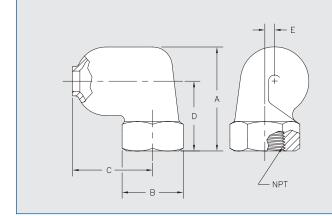
Cooling and cleaning of air and gas, dust control, spraying onto filters, spray drying, desuperheating.

		Dimen	sions (in	ı.)		
Thread Size Ordering no.	Hex Male NPT	Size	А	В	D	Approx. Wt. (lb.) Brass
214. xxx. YY. BA	1/8	11/16	1.531	.718	.625	.15
214. xxx. YY. BC	1/4	11/16	1.593	.718	.625	.20
216. xxx. YY. BC	1/4	7/8	1.468	1.156	.843	.25
216. xxx. YY. BE	3/8	7/8	1.468	1.156	.843	.25
218. xxx. YY. BG	1/2	1-1/16	2.531	1.406	1.031	.30

		Oro	dering	a no	ე.			-:					Flow Rate				Spray Diam.
\$	Type	Mat		9	Conne	ection	1	diam.	<u>a</u>			(Ga	allons Per Minu	te)			D (in.)
	1,700				COLLIN	COLIOI	'	9	Sac			liters per minute					@ 40 psi
Spray angle		316 SS	30 Brass	1/	Male 8" 1/4"		1/2"	ui) Orifice	i) Free ('u) Passage	10 psi	20 psi	2 bar	40 psi	60 psi	80 psi	100 psi	H=10"
60°	214. 184	0	0	В	A BC	-	-	.020	.019	.01	.02	.08	.02	.03	.04	.04	8
80°	214. 245	0	0	В	A BC	-	-	.039	.019	.02	.04	.16	.05	.06	.07	.08	18
	214. 305	0	0	В	A BC	-	-	.071	.019	.05	.07	.32	.10	.12	.14	.16	18
60°	216. 324	0	0		- BC	BE	-	.039	.039	.06	.09	.40	.12	.15	.18	.20	8
	216. 364	0	0		- BC	BE	-	.055	.055	.10	.14	.63	.20	.24	.28	.31	8
	216. 404	0	0		- BC	BE	-	.079	.078	.16	.22	1.0	.31	.38	.44	.49	8
90°	216. 496	0	0		- BC	BE	-	.118	.078	.26	.37	1.7	.53	.65	.75	.83	20
	216. 566	0	0		- BC	BE	-	.158	.078	.39	.55	2.5	.78	.95	1.1	1.2	20
	216. 646	0	0		- BC	BE	-	.138	.078	.62	.88	4.0	1.2	1.5	1.8	2.0	20
	216. 686	0	0		- BC	BE	-	.158	.078	.78	1.1	5.0	1.6	1.9	2.2	2.5	20
	216. 726	0	0		- BC	BE	-	.197	.078	.98	1.4	6.3	2.0	2.4	2.8	3.1	20
	216. 776	0	0		- BC	BE	-	.236	.078	1.3	1.9	8.5	2.6	3.2	3.7	4.2	20
	218. 646	0	0	'			BG	.197	.078	.62	.88	4.0	1.2	1.5	1.9	2.0	20
	218. 666	0	0	'			BG	.217	.078	.70	.99	4.5	1.4	1.7	2.0	2.2	20
	218. 706	0	0				BG	.256	.078	.87	1.2	5.6	1.7	2.1	2.5	2.8	20
	218. 766	0	0	'			BG	.197	.078	1.2	1.8	8.0	2.5	3.0	3.5	3.9	20
	218. 826	0	0				BG	.256	.078	1.7	2.5	11.2	3.5	4.3	4.9	5.5	20
	218. 846	0	0				BG	.296	.078	1.9	2.7	12.5	3.9	4.8	5.5	6.1	20
	218. 886	0	0			-	BG	.355	.094	2.5	3.5	16.0	5.0	6.1	7.0	7.9	20

Example Type + Material no. + Conn. = Ordering no. for ordering: 216. 496 + 17 + BC = 216. 496. 17. BC

This product line is also available in larger capacities up to 5 gpm @ 40 psi. Please contact your local representative or Lechler if you require a larger size.


Fine, uniform hollow cone spray, also at low pressures.

Applications: cooling and cleaning of gas, water re-cooling, dust control, chemical process engineering.

Sectional view of a series 373 »Ramp Bottom« nozzle

Inlet		Dimensio	ns (in.)			
(Female NPT)	А	B (Hex)	С	D	E	Wt.(lb.)
3/4	2.2	1.3	1.9	1.5	.19	.4
1	2.6	1.6	2.1	1.8	.25	.6
1-1/4	3.0	1.9	2.6	2.0	.31	1.2
1-1/2	3.8	2.2	3.2	2.6	.31	2.0
2	4.3	2.8	3.7	2.8	.50	2.7
2-1/2	5.3	3.1	5.5	3.4	.81	4.5
3 (narrow)	6.7	4.0	6.8	4.3	1.1	11
3 (standard)	6.0	4.0	4.6	4.5	1.1	10
4 (narrow)	8.8	5.0	9.5	5.3	1.4	35
4 (standard)	8.8	5.0	7.5	5.4	1.4	32

Narrow angle nozzles

	Orderin	_		diam.					Flow Rate						Spray Angl	
Type	Mat. no.	Conn	ection					(Gailo	113 1 61 10	,	litere ner			i ir	degrees a	at
	SS	Eomo	le NPT	Orifice							liters per minute					
	316	гена	IE INF I	Öri	3	l 5	1 7	l 10	l 15	20	2	40	l 60	3	1 7	15
	17	3"	4"	(in.)	psi	psi	psi	psi	psi	psi	bar	psi	psi	psi	psi	psi
373, 513	0	MB	-	1.45	53	68	80	94	114	132	601	183	220	45	48	48
373. 553	0	MB	_	1.62	67	86	100	119	144	165	752	230	278	42	48	50
373. 583	0	MB	-	1.81	80	103	120	143	173	198	902	277	335	44	48	48
373. 603	0	MB	-	2.03	94	120	140	166	202	232	1057	320	388	42	48	50
373. 613	0	MB	-	2.09	101	128	150	178	215	246	1121	341	413	39	48	50
373. 613	0	-	MF	2.03	101	128	150	178	215	246	1121	341	413	42	47	48
373. 623	0	-	MF	2.21	117	150	175	207	250	285	1299	395	480	41	47	52
373. 633	0	-	MF	2.50	135	171	200	236	285	328	1495	450	545	41	47	52
373. 643	0	-	MF	2.68	152	194	225	266	322	368	1677	508	615	41	47	51
373. 653	0	-	MF	2.87	165	208	245	287	348	399	1899	550	662	41	47	50
373. 673	0	-	MF	3.17	201	255	300	353	428	490	2234	680	820	41	47	49

Wider angle nozzles

			Ord	dering i						am.					low Rat						oray Ang degrees	
Type	Mat.no.				Conne	ection	1			Orifice diam.				(Cicaio)		······································	liters per minute			""	uegrees	aı
	316 S				Female	e NPT) jįj	3	l 5	1 7	l 10	l 15	l 20	2	40	l 60	5	l 15	I 40
	17	3/4"	1"	1 ¹ /4"	1 ¹ /2"	2"	21/2"	3"	4"	(in.)	psi	psi	psi	psi	psi	psi	bar	psi	psi	psi	psi	psi
372. 975	0	BL	-	-	-	-	-	-	-	.28	2.2	2.9	3.4	4.0	4.9	5.7	26	8.1	9.9	56	70	74
373. 015	0	BL	-	-	-	-	-	-	-	.32	2.8	3.6	4.3	5.1	6.3	7.2	33	10.2	12.5	66	74	75
373. 045	0	BL	-	-	-	-	-	-	-	.35	3.5	4.5	5.3	6.4	7.8	9.0	41	12.7	15.6	72	80	78
373. 084 373. 115	0	-	BN BN	-	-	-	-	-	-	.37 .45	4.2 5.1	5.5 6.6	6.5 7.8	7.8 9.3	9.5 11.4	11.0 13.2	50 60	15.5 18.6	19.0 23	57 64	60 72	62 71
373. 115	0	-	BN	-	-	-	-		-	.48	6.2	8.0	9.5	11.3	13.9	16.0	73	23	28	72	82	78
373, 175	0	_	BN	-	_	_	_	_	_	.51	7.2	9.3	11.0	13.2	16.2	18.6	85	26	32	80	84	82
373. 205	O	-	_	BQ	-	-	-	-	-	.59	8.6	11.1	13.1	15.7	19.2	22	101	31	38	70	78	78
373. 235	0	-	-	BQ	-	-	-	-	-	.64	10.3	13.3	15.7	18.8	23	27	121	38	46	66	76	75
373. 255	0	-	-	BQ	-	-	-	-	-	.68	11.0	14.3	16.9	20	25	29	130	40	49	66	76	75
373. 285	0	-	-	BQ		-	-	-	-	.81	14.2	18.3	22	26	32	37	167	52	63	80	85	84
373. 325	0	-	-	-	BS	-	-	-	-	.80	16.7	22	25	30	37	43	196	61	74	80	85	85
373. 345	0	-	-	-	BS	-	-	-	-	.87	19.0	25	29	35	43	49	224	70	85	82	85	84
373. 365 373. 384	0	-	-	-	BS -	- BW	-	-	-	.93 .87	21 24	27 31	32 37	38 44	47 54	54 62	248 282	77 88	94 107	74 65	78 69	77 68
373. 415	0		-		-	BW		-	-	1.01	29	37	44	52	64	74	337	105	128	74	78	77
373. 445	0	_	_		-	BW	_	_	_	1.14	35	45	53	63	77	89	406	126	154	77	80	80
373, 465	Ö	_	_	-	_	BW	_	_	_	1.21	39	51	60	72	88	101	461	143	175	82	94	90
373. 505	0	-	-	-	-	-	BZ	-	-	1.28	46	60	71	85	104	120	547	170	208	75	78	77
373. 515	0	-	-	-	-	-	ΒZ	-	-	1.37	51	66	78	93	114	132	601	186	228	80	84	82
373. 535	0	-	-	-	-	-	BZ	-	-	1.53	58	75	89	106	130	150	683	212	260	80	84	82
373. 555	0	-	-	-	-	-	BZ	-	-	1.62	64	83	98	117	144	166	756	235	287	80	84	82
373. 514	0	-	-	-	-	-	-	MB	-	1.45	50	65	77	92	112	129	590	183	224	56	61	62
373. 554	0	-	-	-	-	-	-	MB	-	1.62	63	81	96	115	141	163	741	230	282	62	66	68
373. 584	0	-	-	-	-	-	-	MB MB	-	1.81	77 90	99	117	140	171 201	198	902 1057	280	343	62 68	66 72	68
373. 605 373. 615			-					MB	-	2.03 2.09	95	116 123	137 146	164 174	213	232 246	1121	328 348	402 426	70	76	77 77
373. 614	0		-					IVID	MF	2.09	95	123	146	174	213	246	1121	348	426	64	67	69
373. 625	0	_	_	_	_	_	_	_	MF	2.21	110	143	169	202	247	285	1299	403	494	71	74	78
373. 635	Ö	-	-	-	-	-	-	-	MF	2.50	127	164	194	232	284	328	1495	464	568	76	80	82
373. 645	0	-	-	-	-	-	-	-	MF	2.68	143	184	218	260	319	368	1677	520	637	78	82	84
373. 655	0	-	-	-	-	-	-	-	MF	2.87	155	200	236	282	346	399	1819	564	691	80	83	87
373. 675	0	-	-	-	-	-	-	-	MF	3.17	190	245	290	347	424	490	2234	693	849	82	85	89

Example Type + Material no. + Conn. = Ordering no. for ordering: 373. 325 + 17 + BS = 373. 325. 17. BS

Axial-flow full cone nozzles Series 490 / 491

Non-clogging nozzle design with a very stable spray angle, particularly even liquid distribution and large free cross sections.

Applications:

Cleaning and washing processes, surface spraying, Container cleaning, foam precipitation, degassing of liquids.

Series 490/491 represents a new generation within the axial-flow full cone nozzles product group. These nozzles were developed using state-of-the-art design and simulation methods (CFD).

Nozzles of series 490/491 replace series 460/461 which are still available on request.

Conn.	G Male NPT	Dimens	sions (in.)	D	Hex	Weight Brass
BA	1/8	0.71	0.26	0.39	7/16	.03
ВС	1/4	0.87	0.39	0.51	9/16	.04
BE	3/8	0.96	0.39	0.63	11/16	.07
BE	3/8	1.18	0.39	0.63	11/16	.11
BG	1/2	1.28	0.51	0.83	14/16	.13
BG	1/2	1.71	0.51	0.83	14/16	.19
BK	3/4	1.65	0.59	1.26	1-1/16	.42
BK	3/4	1.97	0.59	1.26	1-1/16	.44
ВМ	1	2.20	0.67	1.57	1-7/16	.77

Subject to technical modification.

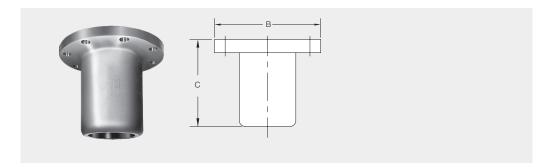
In a critical installation situation, please ask for the exact dimensions.

			Ord	dering	no.					-i						ow Rat						/ Diam. (in.)
₹	Туре	Mat	. no.			Conn	ection			diam	age			liters	(Gallori	01011	iii iatoj				@3	(In.) 60 psi
e a		9 L	Brass			Male	NPT			Orifice diam.	Free Passage			per minute							1	311
Spray angle		ည် 1Y	30	1/8"	1/4"	3/8"	1/2"	3/4"	1"	(in.)	(in.)	10 psi	20 psi	2 bar	30 psi	40 psi	60 psi	80 psi	100 psi	150 psi	H=8"	H=20"
45°	490. 403	0	0	ВА	-	-	-	-	-	.049	.049	.17	.23	1.00	0.27	.30	.35	.40	.43	.51	6	16
	490. 523	0	0	BA	-	-	-	-	-	.067	.067	.35	.46	2.00	0.54	.60	.71	.79	.87	1.02	6	16
	490. 603	0	0	-	ВС	BE	-	-	-	.079	.079	.54	.72	3.15	0.84	.95	1.11	1.25	1.37	1.61	6	16
	490. 643	-	0	-	-	BE	-	-	-	.096	.098	.69	.91	4.00	1.07	1.20	1.41	1.59	1.73	2.04	6	16
	490. 683	-	0	-	-	BE	-	-	-	.100	.100	.86	1.14	5.00	1.34	1.50	1.77	1.98	2.17	2.55	6	16
	490. 703	-	0	-	-	BE	-	-	-	.104	.104	.97	1.27	5.60	1.50	1.68	1.98	2.22	2.43	2.85	6	16
	490. 723	0	0	-	-	BE	-	-	-	.112	.112	1.09	1.43	6.30	1.69	1.89	2.23	2.50	2.73	3.21	6	16
	490. 783	-	0	-	-	-	BG	-	-	.136	.136	1.55	2.05	9.00	2.41	2.70	3.18	3.57	3.90	4.58	6	16
	490. 843	-	0	-	-	-	BG	-	-	.150	.150	2.16	2.85	12.50	3.35	3.76	4.42	4.96	5.42	6.37	6	16
60°	490. 404	0	0	ВА	-	-	-	-	-	.045	.045	.17	0.23	1.00	.27	.30	.35	.40	.43	0.51	9	22
	490. 444	0	-	BA	-	-	-	-	-	.049	.049	.22	0.29	1.25	.33	.38	.44	.49	.54	0.64	9	22
	490. 484	0	0	BA	-	-	-	-	-	.057	.057	.28	0.36	1.60	.43	.48	.57	.63	.69	0.82	9	22
	490. 524	0	0	BA	-	-	-	-	-	.063	.063	.35	0.46	2.00	.54	.60	.71	.79	.87	1.02	9	22
	490. 564	0	0	BA	-	-	-	-	-	.071	.071	.43	0.57	2.50	.67	.75	.88	.99	1.08	1.27	9	22
	490. 604	0	0	BA	ВС	BE	-	-	-	.081	.081	.54	0.72	3.15	.84	.95	1.11	1.25	1.37	1.61	9	22
	490. 644	0	0	-	ВС	BE	-	-	-	.091	.091	.69	0.91	4.00	1.07	1.20	1.41	1.59	1.73	2.04	9	22
	490. 684	0	0	-	ВС	BE	-	-	-	.102	.102	.86	1.14	5.00	1.34	1.50	1.77	1.98	2.17	2.55	9	22
	490. 724	0	0	-	ВС	BE	-	-	-	.112	.110	1.09	1.43	6.30	1.69	1.89	2.23	2.50	2.73	3.21	9	22
	490. 764	0	0	-	-	BE	-	-	-	.128	.128	1.38	1.82	8.00	2.14	2.40	2.83	3.17	3.47	4.08	9	22
	490. 804	0	0	-	-	BE	-	-	-	.146	.146	1.72	2.28	10.00	2.68	3.00	3.53	3.97	4.34	5.10	9	22
	490. 844	0	0	-	-	-	BG	-	-	.159	.159	2.16	2.85	12.50	3.35	3.76	4.42	4.96	5.42	6.37	9	22
	490. 884	0	0	-	-	-	BG	-	-	.183	.183	2.76	3.64	16.00	4.28	4.81	5.65	6.34	6.94	8.16	9	22
	490. 924	0	0	-	-	-	-	BK	-	.205	.205	3.45	4.56	20.00		6.01	7.07	7.93	8.67	10.20	9	22
	490. 964	0	0	-	-	-	-	BK	-	.228	.228	4.31	5.69	25.00	6.70	7.51	8.83	9.91	10.84	12.74	9	22
	491. 044	0	0	-	-	-	-	-	BM	.285	.285	6.90	9.11	40.00		12.02		15.86		20.39	9	22
	491. 084	0	0	-	-	-	-	-	ВМ	.321	.321	8.63	11.38	50.00	13.39	15.02	17.67	19.82	21.67	25.49	9	22

Axial-flow full cone nozzles Series 490 / 491

			Ord	dering	no.					-						low Rat						/ Diam. (in.)
∢	Туре	Mat	. no.			Conne	ection	ı		Orifice diam.	age			liters								80 psi
≥ o		9	Brass			Male	NPT			Orifice	Free Passage			per minute							1	$\Delta $
Spray angle		31 1 Y	30 8	1/8"	1/4"	3/8"	1/2"	3/4"	1"	(in.)	(in.)	10 psi	20 psi	2 bar	30 psi	40 psi	60 psi	80 psi	100 psi	150 psi	H=8"	H=20"
90°	490. 406	0	0	ВА	-	-	-	-	-	.047	.047	.17	.23	1.00	.27	.30	.35	.40	.43	.51	15	34
	490. 446	-	0	BA	-	-	-	-	-	.051	.051	.22	.29	1.25	.33	.38	.44	.49	.54	.64	15	34
	490. 486	0	0	BA	-	-	-	-	-	.057	.057	0.28	.36	1.60	.43	.48	.57	.63	.69	.82	15	34
	490. 526	0	0	BA	-	-	-	-	-	.067	.067	.35	.46	2.00	.54	.60	.71	.79	.87	1.02	15	34
	490. 566	0	0	BA	-		-	-	-	.075	.075	.43	.57	2.50	.67	.75	.88	.99	1.08	1.27	15	34
	490. 606	0	0	BA	-	BE	-	-	-	.081	.081	.54	.72	3.15	.84	.95	1.11	1.25	1.37	1.61	15	34
	490. 646	0	0	-	BC BC	BE BE	-	-	-	.094	.094	.69	.91	4.00	1.07	1.20	1.41	1.59	1.73	2.04	15	38
	490. 686	0	0	-	BC	BE	-	-	-	.106	.106	.86	1.14	5.00	1.34	1.50	1.77	1.98	2.17	2.55	15	38
	490. 726 490. 746	0	0	_	ьс	BE	-	-	-	.126 .124	.110	1.09	1.43	6.30	1.69	1.89	2.23	2.82	3.08	3.21	15 15	38 38
	490. 746	0	0	_	_	BE	_		-	.124	.124	1.38	1.82	8.00	1.90	2.40	2.83	3.17	3.47	4.08	15	38
	490. 806	0		_	_	BE				.154	.154	1.72	2.28	10.00	2.14	3.00	3.53	3.97	4.34	5.10	15	38
	490, 846	0	0		_	BE				.183	.157	2.16	2.85	12.50	3.35	3.76	4.42	4.96	5.42	6.37	15	38
	490, 886			_	_	-	ВG	_	_	.215	.177	2.76	3.64	16.00	4.28	4.81	5.65	6.34	6.94	8.16	15	38
	490, 926	0		_	_	_	BG	_	_	.232	.177	3.45	4.56	20.00	5.36	6.01	7.07	7.93	8.67	10.20	15	38
	490. 966	0	0	_	_	_	BG	вк	-	.258	.191	4.31	5.69	25.00	6.70	7.51	8.83	9.91	10.84	12.74	15	38
	491. 006	0		_	_	_	BG	BK	_	.297	.285	5.44	7.17	31.50	8.44	9.47	11.13	12.49	13.66	16.06	15	38
	491, 046	0	0	_	_	_	_	BK	_	.339	.260	6.90	9.11	40.00	10.71	12.02	14.14	15.86	17.34	20.39	15	38
	491. 086	0	0	-	-	-	-	BK	вм	.372	.285	8.63	11.38	50.00	13.39	15.02	17.67	19.82	21.67	25.49	15	38
	491. 126	0	0	-	-	-	-	-	вм	.409	.315	10.87	14.35	63.00	16.87	18.93	22.26	24.98	27.31	32.12	15	38
	491. 146	0	-	-	-	ı	-	-	вм	.433	.295	12.25	16.17	71.00	19.01	21.33	25.09	28.15	30.78	36.20	15	38
120°	490. 368	0	0	ВА	-	-	-	-	-	.033	.026	.11	.14	.63	.17	.19	.22	.25	.27	.32	27	48
	490. 408	0	0	ВА	-	-	-	-	-	.047	.047	.17	.23	1.00	.27	.30	.35	.40	.43	.51	27	48
	490. 448	0	0	ВА	-	-	-	-	-	.051	.051	.22	.29	1.25	.33	.38	.44	.49	.54	.64	27	48
	490. 488	0	0	BA	-	-	-	-	-	.057	.057	.28	036	1.60	.43	.48	.57	.63	.69	.82	27	48
	490. 528	0	0	BA	-	-	-	-	-	.067	.067	.35	.46	2.00	.54	.60	.71	.79	.87	1.02	27	48
	490. 568	0	0	BA	-	-	-	-	-	.075	.075	.43	.57	2.50	.67	.75	.88	.99	1.08	1.27	27	48
	490. 608	0	0	-	-	-	-	-	-	.083	.081	.54	.72	3.15	.84	.95	1.11	1.25	1.37	1.61	27	48
	490. 648	0	0	-	BC	BE	-	-	-	.094	.094	.69	.91	4.00	1.07	1.20	1.41	1.59	1.73	2.04	27	52
	490. 688	0	0	-	BC	BE	-	-	-	.108	.108	.86	1.14	5.00	1.34	1.50	1.77	1.98	2.17	2.55	27 27	52 52
	490. 728	0	0	-	ВС	BE BE	-	_	_	.126	.110	1.09		6.30	1.69	1.89	2.23	2.50	2.73	3.21		
	490. 748 490. 768	0	0	-	-	BE	_	_	_	.126 .136	.126	1.23	1.62 1.94	7.10	1.90	2.13	2.51	3.17	3.08	3.62 4.08	27 27	52 52
	490. 768	0	0	-	-	BE	-	-	-	.154	.154	1.38	2.28	10.00	2.14	3.00	3.53	3.17	4.34	5.10	27	52
	490, 848	0			_	BE	_	_	_	.185	.157	2.16	2.26	12.50	3.35	3.76	4.42	4.96	5.42	6.37	27	52
	490. 888	0		-	_	_ _	BG			.201	.177	2.76	3.64	16.00	4.28	4.81	5.65	6.34	6.94	8.16	27	52
	490. 928	0	0	-	_	_	BG	_	_	.228	.187	3.45	4.56	20.00	5.36	6.01	7.07	7.93	8.67	10.20	27	52
	490. 968				_	_	BG	вк	_	.262	.191	4.31	5.69	25.00	6.70	7.51	8.83	9.91	10.84	12.74	27	52
	491, 048		0	_	_	_	_	BK	_	.362	.230	6.90	9.11	40.00	10.71	12.02	14.14	15.86	17.34	20.39	27	52
	491. 128	0	0	_	-	-	-	-	вм	.425	.305	10.87	14.35	63.00	16.87	18.93	22.26	24.98	27.31	32.12	27	52
	491. 148	0	-	-	-	-	-	-	ВМ	.449	.301	12.25	16.17	71.00		21.33	1		30.78	36.20	27	52

+ Material no. + Conn. = Ordering no. Example Type for ordering: 490. 368 + 1Y + BA = 490. 368. 1Y. BA


Axial-flow full cone nozzles Series 485

One-piece design generates large droplets and even distribution at a wide range of operating pressures.

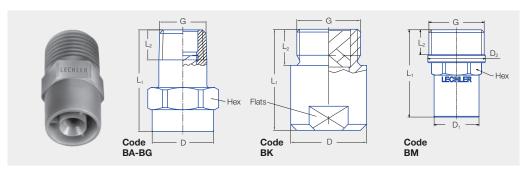
Applications:

High volume surface spraying, cooling and quenching, fire protection, chemical processing and scrubbers.

Nozzle Inlet Flange Conn.	Ordering no.	Orifice diam.*				(0	Gallons P	Rate er Minute	,	liters per minute				Spray Angle degrees		Dimer (ir		Free Passage	Approx. Wgt.
(in.)		Ō (in.)	1 psi	2 psi	5 psi	7 psi	10 psi	15 psi	20 psi	2 bar	40 psi	60 psi	3 psi	7 psi	15 psi	В	С	년 (in.)	(lb.)
4	485. 646. 17. 04 485. 656. 17. 04 485. 666. 17. 04 485. 676. 17. 04	2.25 2.50 2.75 3.00	90 105 125 135	125 144 170 188	191 220 262 290	222 257 310 342	260 302 365 404	318 365 440 485	360 420 505 562	1581 1844 2218 2468	498 578 702 784	605 700 860 950	77 86 88 91	80 90 92 95	82 91 94 97	9.00	6.13	1.19	19
5	485. 676. 17. 05 485. 686. 17. 05 485. 696. 17. 05 485. 706. 17. 05 485. 716. 17. 05 485. 726. 17. 05	2.75 2.84 2.95 3.15 3.32 3.50	135 145 159 180 199 219	188 201 220 249 274 303	290 310 333 382 425 465	342 365 392 441 489 548	404 430 462 516 580 645	485 521 559 618 704 785	562 602 640 709 806 892	2468 2644 2811 3114 3540 3918	784 827 881 968 1118 1235	950 1005 1070 1150 1345 1495	82 85 86 88 84 86	92 92 93 94 90 92	92 95 95 98 94 97	10.00	8.38	.69	42
6	485. 716. 17. 06 485. 726. 17. 06 485. 736. 17. 06 485. 746. 17. 06 485. 756. 17. 06 485. 766. 17. 06	3.25 3.40 3.62 3.87 4.12 4.62	199 219 241 265 285 310	274 303 333 366 400 435	425 465 520 560 628 675	489 548 602 656 735 795	580 645 710 774 870 950	704 785 860 935 1065 1158	806 892 978 1070 1225 1325	3540 3918 4296 4700 5381 5820	1118 1235 1355 1478 1710 1870	1345 1495 1640 1770 2100 2280	80 82 83 86 87 88	86 88 89 892 94 94	90 94 95 98 96 98	11.00	10.56	.97	54
8	485. 736. 17. 08 485. 756. 17. 08 485. 776. 17. 08 485. 786. 17. 08	3.50 3.93 4.43 5.12	268 330 417 478	370 455 575 660	555 700 860 990	650 820 995 1140	760 960 1160 1335	915 1150 1380 1590	1030 1315 1575 1800	4524 5776 6918 7906	1420 1800 2120 2450	1700 2150 2535 2925	63 80 90 82	70 87 100 96	70 90 102 101	13.47	12.25	1.31	98

Nozzle Inlet	2.229	diam.*				(0		Rate er Minute	e)					Spray Angle		Dimer (ir		ssage	Approx. Wgt.
Flange Conn.		Orifice c								liters per minute			in	degrees	at			Pa	
(in.)		Ö (in.)	1 psi	2 psi	4 psi	5 psi	7 psi	10 psi	15 psi	2 bar	20 psi	25 psi	1 psi	2 psi	3 psi	В	С	(in.)	(lb.)
10	485. 806. 17. 10 485. 826. 17. 10 485. 836. 17. 10	5.00 5.56 6.00	520 640 760	730 900 1070	1030 1270 1510	1150 1410 1680	1370 1660 2000	1630 2000 2400	2000 2450 2930	8785 10762 12870	2300 2850 3360	2580 3020 3760	85 85 85	87 87 87	90 90 90	16.00	17.00	1.75	140
12	485. 846. 17. 12 485. 856. 17. 12 485. 866. 17. 12 485. 876. 17. 12	6.21 6.59 7.06 7.40	810 890 1040 1130	1140 1270 1460 1600	1610 1790 2060 2260	1780 2000 2300 2530	2130 2370 2720 2990	2550 2828 3250 3580	3120 3460 4000 4380	13705 15198 17570 19240	3560 4000 4650 5060	3980 4470 5200 5650	85 85 85 85	87 87 87 87	90 90 90 90	19.00	20.00	2.06	200
16	485. 896. 17. 16 485. 916. 17. 16	8.00 9.25	1350 1690	1890 2400	2660 3390	2980 3800	3510 4500	4200 5380	5150 6580	22622 28904	5940 7600	6650 8490	85 85	87 87	90 90	23.50	22.00	2.75	330
18	485. 936. 17. 18	10.7	2220	3140	4450	4970	5880	7030	8610	37821	9940	1110	85	87	90	25.00	28.75	2.75	450

^{*} Nozzles are manufactured to spray performance, not orifice diameter



Very uniform spray pattern.

Applications:

Cleaning and washing process, cooling of gaseous fluids and solids, surface spraying, spraying onto mats in air washers, improving of chemical reactions.

Code			Dimensio	ns [in]		
Code	G	L ₁	L ₂	D ₁	D_2	Hex/Flats
BA	1/8 NPT	.87	.26	.51	-	9/16
ВС	1/4 NPT	.87	.38	.51	-	9/16
BE	3/8 NPT	1.18	.39	.67	-	11/16
BG	1/2 NPT	1.71	.52	.87	-	7/8
BK	3/4 NPT	1.65	.59	1.24	-	1-1/8
BM	1 NPT	2.07	.59	1.06	1.36	1-3/8

Subject to technical modifications. Please enquire about the exact dimensions if the installation situation is critical!

Spray angle				Orde	ring no					۔	je Je				low Rate							Diam. D 30 psi
angle		Mat.	no.			Cone	ection			diam.	ssaç			(Gallor	ns Per M	inute)					(111.)	. 30 psi
A	Туре	PVDF	Polypro			Male	NPT			Orifice (Free passage			liters per minute								
		а 5Е	53	1/8"	1/4"	3/8"	1/2"	3/4"	1"	(in)	(in)	10 psi	20 psi	2 bar	30 psi	40 psi	60 psi	80 psi	100 psi	150 psi	H = 8"	H =20"
60°	460. 644 460. 964	0	-	-	ВС	BE	-	- BK	-	.095 .229	.075	.69 4.3	.91 5.7	4.0 25	1.1 6.7	1.2 7.5	1.4 8.8	1.6 9.9	1.7 10.8	2.0 12.7	9	22 22
					_	-	-	DK	-				_	-	-							
90°	460. 326	0	-	BA	-	-	-	-	-	.032	.022	.07	.09	0.4	.11	.12	.14	.16	.17	.20	15	34
	460. 406 460. 486	0	-	BA	-	-	-	-	-	.047	.033	.17	.23	1.0	.27	.30	.35	.40	.43	.51	15 15	34
	460, 486	0	-	BA BA	-	-	-	-	-	.057	.047	.28	.36	1.6	.43	.48	.57	.63 .79	.69 .87	.82 1.0	15	34
	460. 526	0	_	BA	_	BE	-	-	-	.081	.057	.54	.72	3.2	.84	.95	1.1	1.2	1.4	1.6	15	34
	460.646	0	-	-	BC	BE		_	_	.091	.071	.69	.72	4.0	1.1	1.2	1.4	1.6	1.7	2.0	15	38
	460.726	0	_	_	-	BE	_	_	_	.116	.079	1.1	1.4	6.3	1.7	1.9	2.2	2.5	2.7	3.2	15	38
	460.746	0	-	-	-	BE	_	_	_	.130	.075	1.2	1.6	7.1	1.9	2.1	2.5	2.8	3.1	3.6	15	38
	460.766	O	-	-	-	BE	-	_	-	.130	.095	1.4	1.8	8.0	2.1	2.4	2.8	3.2	3.5	4.1	15	38
	460.806	0	-	-	-	BE	-	-	-	.146	.106	1.7	2.3	10.0	2.7	3.0	3.5	4.0	4.3	5.1	15	38
	460.846	0	-	-	-	BE	-	-	-	.160	.126	2.2	2.8	12.5	3.3	3.8	4.4	5.0	5.4	6.4	15	38
	460.886	0	-	-	-	BE	BG	-	-	.185	.122	2.8	3.6	16.0	4.3	4.8	5.7	6.3	6.9	8.2	15	38
	460.926	0	-	-	-	-	BG	-	-	.205	.150	3.5	4.6	20	5.4	6.0	7.1	7.9	8.7	10.2	15	38
	460.966	0	-	-	-	-	BG	BK	-	.229	.150	4.3	5.7	25	6.7	7.5	8.8	9.9	10.8	12.7	15	38
	461.006	0	-	-	-	-	BG	-	-	.252	.150	5.4	7.2	32	8.4	9.5	11.1	12.5	13.7	16.1	15	38
	461.046	0	0	-	-	-	-	BK	-	.284	.209	6.9	9.1	40	10.7	12.0	14.1	15.9	17.3	20	15	38
	461. 086	0	-	-	-	-	-	BK	-	.323	.209	8.6	11.4	50	13.4	15.0	17.7	19.8	22	25	15	38
	461. 126	0	-	-	-	-	-	-	ВМ	.366	.256	10.9	14.3	63	16.9	18.9	22	25	27	32	15	38
	461.146	0	-	-	-	-	-	-	BM	.390	.264	12.3	16.2	71	19.0	21	25	28	31	36	15	38

Continued on next page.

Example Type + Material no. + Code = Ordering no. for ordering: 460.326 + 5E + BA = 460.326.5E.BA

Axial-flow full cone nozzles Series 460 / 461

Spray			(Orderin	g no.						o o			F	low Rate	Э						am. D (in.)
angle		Mat	no.			Cone	ection			diam.	passage				ns Per M						@ 3	0 psi
A	Туре	PVDF	Polypro			Male	NPT			Orifice	Free par			liters per minute								
		5E	53	1/8"	1/4"	3/8"	1/2"	3/4"	1"	(in)	(in)	10 psi	20 psi	2 bar	30 psi	40 psi	60 psi	80 psi	100 psi	150 psi	H = 8"	H =20"
120°	460. 408	0	-	ВА	-	-	-	-	-	.047	.033	.17	.23	1.0	.27	.30	.35	.40	.43	.51	27	48
	460. 488	0	-	BA	-	-	-	-	-	.059	.039	.28	.36	1.6	.43	.48	.57	.63	.69	.82	27	48
	460. 528	0	-	BA	-	-	-	-	-	.065	.047	.35	.46	2.0	.54	.60	.71	.79	.87	1.0	27	48
	460. 608	0	-	BA	-	-	-	-	-	.083	.055	.54	.72	3.2	.84	.95	1.1	1.2	1.4	1.6	27	48
	460. 648	0	-	-	ВС	BE	-	-	-	.097	.063	.69	.91	4.0	1.1	1.2	1.4	1.6	1.7	2.0	27	52
	460. 728	0	-	-	-	BE	-	-	-	.122	.075	1.1	1.4	6.3	1.7	1.9	2.2	2.5	2.7	3.2	27	52
	460. 748	0	-	-	-	BE	-	-	-	.130	.075	1.2	1.6	7.1	1.9	2.1	2.5	2.8	3.1	3.6	27	52
	460. 768	0	-	-	-	BE	-	-	-	.150	.095	1.7	2.3	10.0	2.7	3.0	3.5	4.0	4.3	5.1	27	52
	460. 808	0	-	-	-	BE	-	-	-	.150	.095	1.7	2.3	10.0	2.7	3.0	3.5	4.0	4.3	5.1	27	52
	460. 848	0	-	-	-	BE	-	-	-	.165	.106	2.2	2.8	12.5	3.3	3.8	4.4	5.0	5.4	6.4	27	52
	460. 888	0	-	-	-	BE	BG	-	-	.181	.122	2.8	3.6	16.0	4.3	4.8	5.7	6.3	6.9	8.2	27	52
	460. 968	0	-	-	-	-	BG	-	-	.232	.162	4.3	5.7	25	6.7	7.5	8.8	9.9	10.8	12.7	27	52
	461. 048	-	0	-	-	-	-	BK	-	.299	.193	6.9	9.1	40	10.7	12.0	14.1	15.9	17.3	20	27	52

Example Type + Material no. + Code = Ordering no. for ordering: 460.408 + BA = 460.408.5E.BA



One-piece design generates large droplets and even distribution at a wide range of operating pressures.

Applications:

High volume surface spraying, scubbers, quench cooling and chemical processing.

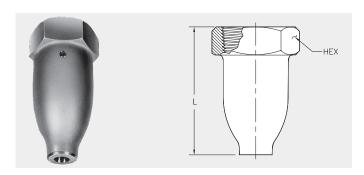
Dime	ensions ((in.)	
Inlet (NPT)	L	D	Wt. (lb.)
Male 2-1/2 3	6.06	3.75	3.5
	6.31	3.87	6.5
Female 2-1/2 3	6.06	3.75	3.5
	6.31	3.87	6.5

	Ordering	no.				diam.*	ssage						ow Rate s Per Min	ute)				Spray Angle
Type	Mat. no.		Conr	nection		Se dis	_ g					(Gallori	0 1 01 11111	<u> </u>	liters per minute			in degrees
	17 316 S	Male 21/2"	NPT 3"	Femal 21/2"	le NPT 3"	(in.)	(in.)	1 psi	2 psi	5 psi	7 psi	10 psi	15 psi	20 psi	2.0 bar	40 psi	60 psi	@ 15 psi
455, 556	0	BY	_	BZ	_	1.37	.44	31	49	70	95	115	143	166	729	230	286	94
455. 576	0	BY	-	BZ	_	1.50	.44	41	56	91	108	132	164	190	834	264	328	101
455. 586	0	BY	-	BZ	-	1.62	.44	44	61	99	118	142	175	205	900	284	350	99
455. 596	0	BY	-	BZ	-	1.75	.44	47	65	105	125	150	185	215	944	300	390	102
455. 606	0	BY	-	BZ	-	1.87	.44	50	71	112	132	160	195	225	988	320	450	100
455. 616	0	-	MA	-	MB	1.68	.56	59	83	130	153	183	222	255	1120	358	438	85
455. 626	0	-	MA	-	MB	1.76	.56	67	94	145	170	200	245	280	1229	390	482	90
455. 636	0	-	MA	-	MB	1.93	.56	78	109	168	196	233	282	322	1414	446	545	96
455. 646	0	-	MA	-	MB	2.06	.56	88	121	185	216	255	309	350	1537	485	592	98
455. 656	0	-	MA	-	MB	2.25	.56	96	132	200	235	277	332	380	1669	522	640	100
455. 666	0	-	MA	-	MB	2.31	.56	100	138	212	248	292	352	404	1774	555	674	100

This product line is also available in larger capacities with threaded inlets ranging from 4" through 8" in size. Please contact your local representative or Lechler if you have an application requiring a Free Spray nozzle in a larger size.

Example	Туре	+	Material no.	+	Conn. =	Ordering no.
for ordering:	455. 596	+	17	+	BY =	455. 596. 17. BY

^{*} Nozzles are manufactured to spray performance, not orifice diameter.



Turbine-style vane for uniform atomization and distribution.

Applications:

Surface spraying, quench cooling, fire suppression and chemical processing.

	ensions	(in.)	
Inlet (Female NPT)	L	HEX	Wt. (lb.)
1-1/2	4.31	2-3/16	1.8
2	5.45	2-3/4	2.4
2-1/2	6.00	3-1/4	4.18
3	6.89	3-7/8	6.0

	Ordering	g no.			Flow Rate (Gallons Per Minute) Iters per minute									
Type	Mat. no.		nnection		ice dia				liters per minute	er Minute)				Angle in degrees @ 40 psi
	918 17		male NPT 2" 2 ¹ /2"	3"	E O (in.)	5 psi	10 psi	20 psi	2 bar	40 psi	60 psi	80 psi	100 psi	(* = 15 psi)
STANDARD ANGLE														
459. 244	0	BS		-	.500	14	20	27	124	38	47	54	60	62
459. 284	0	BS		-	.625	18	25	36	165	50	62	71	79	62
459. 355	0	BS		-	.687	26	37	52	233	72	86	100	112	70
459. 356	0	BS		-	.687	26	37	52	233	72	86	100	112	84
459. 343	0	- E	sw -	-	.500	25	35	48	222	68	82	94	105	43
459. 365	0	- E	sw -	-	.656	28	39	53	242	72	86	98	110	*80
459. 415	0	_	sw -	-	.796	38	53	74	339	105	125	144	160	66
459. 455	0	- E	sw -	-	.906	48	68	95	434	132	160	183	205	68
459. 475	0	-	- BZ	-	.910	54	75	104	475	143	172	200	221	83
459. 515	0	-	- BZ	-	1.06	68	94	132	603	185	225	260	290	67
459. 584	0	-		MB	1.31	103	144	200	925	285	345	400	440	57
WIDE ANGLE														
459. 238	0	BS		-	.562	15	20	27	124	37	45	51	56	120
459. 266	0	BS		-	.500	14	19	26	117	35	42	48	53	98
459. 286	0	BS		-	.625	18	25	36	165	50	62	71	79	94
459. 288	0	BS		-	.625	19	26	36	162	49	58	66	73	120
459. 348	0	BS		-	.781	26	36	49	226	69	83	95	105	120
459. 378	0	- E	sw -	-	.781	33	45	61	273	82	98	110	122	118
459. 386	0	_	sw -	-	.796	37	50	68	311	92	111	129	141	*99
459. 408	0	- E	sw -	-	.937	40	55	74	332	100	118	135	147	118
459. 488	0	-	- BZ	-	1.03	64	86	117	521	157	187	212	232	119
459. 496	0	-	- BZ	-	0.98	63	87	119	543	165	200	233	259	*86
459. 575	0	-		MB	1.31	110	150	205	938	275	330	380	421	*90
459. 608	0	-		MB	1.43	132	179	242	1095	328	390	440	485	120

 $^{^{\}ast}$ Nozzles are manufactured to spray performance, not orifice diameter

This product line is also available in larger capacities with inlets up to 6" in size. Please contact your local representative or Lechler if you have an application requiring a larger size.

Example Type + Material no. + Conn. = Ordering no. for ordering: 459. 455 + 17 + BW = 459. 455. 17. BW



Axial-flow full cone nozzles **Series 405**

Very uniform spray pattern.

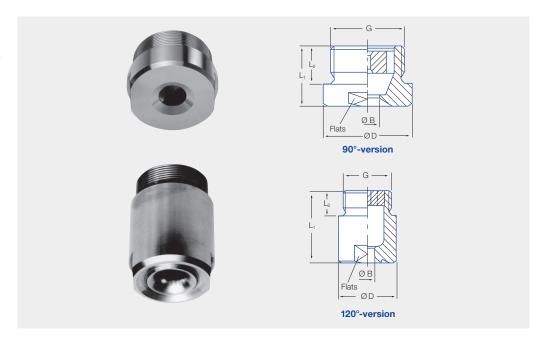
Applications:

Surface spraying, spraying over packings, cleaning and washing process, chemical process engineering, cooling of gaseous fluids and solids, water treatment.

	Dim	ensions (in.)		
G (Male NPT)	L1	L2	D	Flats	Wt. brass (lb.)
1-1/4	1.97	.75	1.93	1-5/8	1.16
1-1/2	2.36	.75	2.32	2	2.02
2	3.07	.94	2.68	2-3/8	3.39

\$		Ordering no.			Ë	passage			(Call	Flow Rate					Diam. D
$ \downarrow $	Type	Material no.	Co	nnection	diam.	388			(Gall	ons Per Mi	nute)			(in.) @	30 psi
≥ o		88		I-I- NDT	Orifice					liters per minute					
Spray angle		316L	IVI	lale NPT	Ö	Free	5	10	20	2	30	40	60		2
s s		1Ý	1 ¹ /4"	1 ¹ /2" 2"	(in.)	(in.)	psi	psi	psi	bar	psi	psi	psi	H=20"	H=40"
60°	405. 204	0	BP		.441	.229	13	17	23	100	27	30	35	22	41
	405. 284	0	-	BR -	.563	.276	21	28	36	160	43	48	57	23	43
	405. 324	0	-	- BV	.646	.296	26	35	46	200	54	60	71	23	43
	405. 364	0	-	- BV	.725	.335	33	43	57	250	67	75	88	23	43
	405. 404	0	-	- BV	.788	.276	41	54	72	315	85	95	111	23	43
90°	405. 206	0	BP		.473	.197	13	17	23	100	27	30	35	31	57
	405. 286	0	-	BR -	.599	.244	21	28	36	160	43	48	57	31	61
	405. 326	0	-	- BV	.678	.303	26	35	46	200	54	60	71	33	63
	405. 366	0	-	- BV	.768	.343	33	43	57	250	67	75	88	33	63
	405. 406	0	-	- BV	.867	.374	41	54	72	315	85	95	111	33	63
120°	405. 208	0	BP		.500	.197	13	17	23	100	27	30	35	57	102
	405. 288	0	-	BR -	.630	.260	21	28	36	160	43	48	57	59	106
	405. 328	0	-	- BV	.701	.311	26	35	46	200	54	60	71	59	110
	405. 368	0	-	- BV	.792	.347	33	43	57	250	67	75	88	59	110
	405. 408	0	-	- BV	.883	.359	41	54	72	315	85	95	111	59	110

Example Type + Material no. + Conn. = Ordering no. for ordering: 405. 204 + 1Y + BP = 405. 204. 1Y. BP


Axial-flow full cone nozzles Series 403

Very uniform spray pattern.

Applications:

Surface spraying, spraying over packings, chemical process engineering, cooling of gaseous fluids and solids.

Other nozzle sizes and materials are available on request.

90°-version

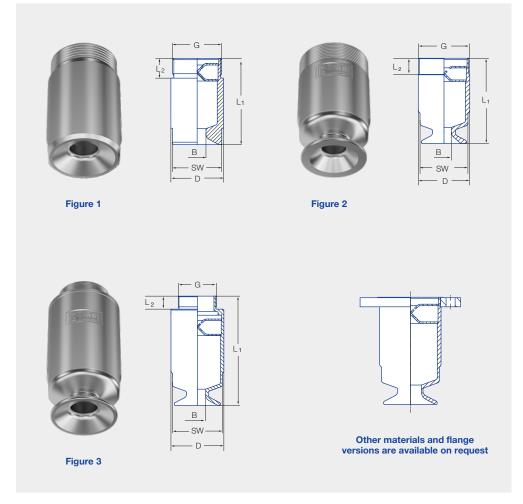
	Dim	ensions (in.)		
G (Male NPT)	L1	L2	D	Flats	Wt. (lb.)
2-1/2	2.0	1.1	3.3	3.0	2.9
3	2.4	1.2	3.9	3.3	3.7
3-1/2	2.8	1.3	4.6	4.1	8.4

120°-version

	Dim	ensions (in.)		
G (Male NPT)	L1	L2	D	Flats	Wt. (lb.)
2-1/2	4.9	1.1	3.3	3.0	6.6
3	6.0	1.2	3.9	3.3	11.5
3-1/2	6.1	1.3	4.6	4.1	18.5
4	6.5	1.4	5.0	4.3	21.0

	Orc	lering r	10.			:	ge de										Spray D	Diam. D
Type	Mat.		Conr	ection		<u>iai</u>	Sa				(Gallor	s Per M	inute)				(in.) @	30 psi
.,,,,,	no.					an an	oas		liters per minute						F==			
			Male	e NPT		iji										1		
	6							5										
	1Y	21/2"	3"	31/2"	4"	(in.)	(in.)	psi	psi	psi	bar	psi	psi	psi	psi	psi	H=20"	H=40"
403 446	0	BY	-	-	-	985	473	52	69	91	400	107	120	141	159	173	35	67
	ō	BY	_	_	_		-	65	86	114		134	-			217		67
	Ö		MA	_	_					143		169						67
	0	-	-	МС	-		-	-		228		269				-		69
	0	BY	_	-	-													112
	Ö		_	_	_			_										112
	ō		MA	_	_					143								112
403, 568	0	-	-	МС	-	_	.473	105	138	182	800	215	240	283	317	347	59	112
403, 608	Ō	_	_		_	l	.473	131	173	228	1000	269	-		-	433	59	112
403, 628	O	_	_	-	ME	1.773	.591	163	216	285	1250	336	375	442	495	542	63	114
	403. 608	Type Mat. no. 28	Type Mat. no. 2 1/2" 403. 446	17 21/2" 3" 403. 446	Type Mat. Connection Male NPT	Type Mat. no. Connection Male NPT	Type Mat. no. Male NPT	Type Mat. O. Male NPT	Type Mat. Connection Male NPT 1Y 21/2" 3" 31/2" 4" (in.) (in.) (in.) 403. 446	Type Mat. Connection Male NPT 21/2" 3" 31/2" 4" (in.) (in.) psi psi 403. 446	Type Mat. no. Connection Male NPT	Type Mat. Connection Male NPT Male N	Type Mat. Connection Male NPT 21/2" 3" 31/2" 4" (in.) (in.) psi	Type Mat. 10.	Type Mat. Connection Male NPT Section Male NPT Name of the part of	Type Mat. Connection Male NPT	Type Mat. no. Male NPT	Type Mat. Connection Male NPT Male NPT

Example Type + Material no. + Conn. = Ordering no. for ordering: 403. 448 + 1Y + BY = 403. 448. 1Y. BY



FreeFlow

Particularly insensitive to clogging thanks to very large free cross sections. Stable spray angle. Uniform spray pattern

Applications:

Gas washing Spraying over packings Dust control Absorption Distillation

Corou					Dime	nsions [in]		Weight
Spray Angle	Туре	Code	Figure	G NPT Male	L ₁	L ₂	D	Flats	(lbs)
	440.0\0\	BR	3	1 1/2	5.20	.87	2.52	2-3/8	3.31
	419.3XX	BV	1	2	4.49	.94	2.52	2-3/8	2.65
	419.4XX	BV	3	2	6.42	1.06	3.15	2-15/16	4.41
	419.4	BY	2	2 1/2	5.28	.94	3.15	2-15/16	3.75
		BV	3	2	7.83	1.06	4.02	3-3/4	8.16
90°	419.51X	BY	3	2 1/2	7.95	1.18	4.02	3-3/4	8.38
+	419.54X	MA	3	3	8.07	1.26	4.02	3-3/4	11.46
120°		MC	2	3 1/2	6.65	1.06	4.02	3-3/4	7.05
		BY	3	2 1/2	9.09	1.18	4.53	4-1/8	11.46
	419.57X	MA	3	3	9.17	1.42	4.53	4-1/8	11.46
		ME	2	4	7.64	36	4.53	4-1/8	9.70
	419.6XX	MA	3	3	9.92	30	4.41	4-9/16	11.90
	419.0	MC	3	3 1/2	10.00	32	4.41	4-9/16	12.13

 $G = Thread\ size \bullet \ L_1 = Total\ Length \bullet \ L_2 = Thread\ Length \bullet \ D = Outer\ diameter\ \bullet \ Flats = Wrench\ size$

Spray				Orde	ring no					В	E					ameter D		
angle*		Mat	Nr.			Co	de			Ø [in]	Ø [in]				ii) at p=			
A	Туре	1Y	2P	F	_	Ф	Φ	Φ	Φ		. ,		(Gall		Z			
		316L SS	904 L	1 1/2 Male NPT	2 Male NPT	2 1/2 NPT male	3 NPT male	3 1/2 NPT male	4 NPT male			5 psi	10 psi	75 psi	H = 20 in	D = 40 in		
90°	419.366	0	0	BR	BV	-	-	-	-	.70	.69	33	43	51	67	97	39	79
	419.396	0	0	BR	BV	-	-	-	-	.81	.69	39	52	61	80	116	39	79
	419.446	0	0	-	BV	BY	-	-	-	.91	.81	52	69	81 101	107 134	155	39	79
	419.486	0	0	-	BV	BY	-	-	-	1.10	.81	65	86	193	39	79		
	419.516	0	0	-	BV	BY	MA	МС	-	1.07	.95	78	104	232	39	79		
	419.546	0	0	-	BV	BY	MA	МС	-	1.30	.95	93	124	274	39	79		
	419.576	0	0	-	-	BY	MA	-	ME	1.34	1.07	111	147	172	228	328	39	79
	419.606	0	0	-	-	-	MA	MC	-	1.48	1.19	131	172	203	268	386	39	79
	419.626	0	0	-	-	-	MA	МС	-	1.69	1.19	163	216	254	335	483	39	79
120°	419.368	0	0	BR	BV	-	-	-	-	.81	.69	33	43	51	67	97	67	114
	419.398	0	0	BR	BV	-	-	-	-	.93	.69	39	52	61	80	116	67	114
	419.448	0	0	-	BV	BY	-	-	-	.96	.81	52	69	81	107	155	67	114
	419.488	0	0	-	BV	BY	-	-	-	1.16	.81	65	86	101	134	193	67	114
	419.518	0	0	-	BV	BY	MA	MC	-	1.07	.95	78	104	122	161	232	67	114
	419.548	0	0	-	BV	BY	MA	MC	-	1.34	.95	93 124 144 190 274					67	114
	419.578	0	0	-	-	BY	MA	-	ME	1.34	1.13						67	114
	419.608	0	0	-	- 1	-	MA	MC	-	1.50	1.27	131	172	203	268	386	67	114
	419.628	0	0	-	-	-	MA	MC	-	1.71	1.27	163	216	254	335	483	67	114

B = Orifice diameter- \emptyset · E = Free passage · * Spray angle at 15 psi

Example Type + Material-Nr. + Code = Ordering no. for ordering: 419.366 + 1Y BR = 419.366.1Y.BR

Axial-flow full cone nozzles **Series 421**

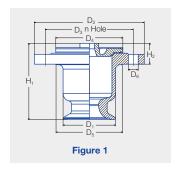
Even full cone distribution, high flow rates.

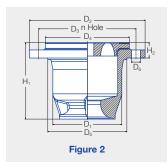
Applications:

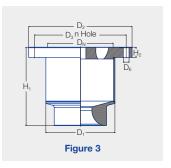
Scrubber, for even surface irrigation, cooling and cleaning of gases, water recooling, column irrigation and for improving chemical reactions via surface enlargement.

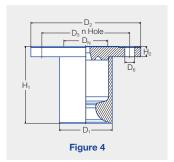
Other nozzle sizes and materials are available on request.

Spray	Ordering	no.			В	Е			Flow	Rate		
angle*			Mat. no.		Ø	Ø			(Gallons F	Per Minute)		
		05.84	1Y.84	53.00	[in]	[in]				Litara mar		
$\ \mathcal{F}\ $	Type		SS							Liters per minute		
							4	7	14.5	2	72	145
		GG	316L	ЪР			psi	psi	psi	bar	7 Z psi	psi
60°	421.564	0	-	0	1.46	0.47	99	121	160	800	305	402
00	421.604	0	_	0	1.54	0.55	124	152	200	1000	381	503
	421.624	0	0	0	1.61	0.51	155	190	250	1250	476	629
	421,644	0	0	0	1.93	0.63	198	243	320	1600	610	805
	421.664	0	0	0	2.20	0.63	247	304	400	2000	762	1006
	421.684	0	0	0	2.28	0.83	309	379	501	2500	953	1257
	421.704	0	0	0	2.56	0.94	390	478	631	3150	1201	1584
	421.724	-	0	0	2.83	1.18	495	607	801	4000	1525	2012
	421.744	-	0	0	3.19	1.34	618	759	1001	5000	1906	2514
	421.764	-	0	0	3.46	1.38	779	956	1261	6300	2401	3168
	421.784	-	0	0	3.90	1.54	990	1214	1602	8000	3049	4023
	421.804	-	0	-	4.41	1.65	1237	1517	2002	10000	3811	5029
	421.824	-	0	-	4.92	2.05	1546	1896	2503	12500	4764	6286
90°	421.566	0	-	0	1.46	0.59	99	121	160	800	305	402
	421.606	0	-	0	1.54	0.59	124	152	200	1000	381	503
	421.626	0	0	0	1.69	0.75	155	190	250	1250	476	629
	421.646	0	0	0	2.09	0.87	198	243	320	1600	610	805
	421.666	0	0	0	2.20	0.94	247	304	400	2000	762	1006
	421.686	0	0	0	2.32	1.10	309	379	501	2500	953	1257
	421.706	0	0	0	2.60	1.26	390	4790	631	3150	1201	1584
	421.726	-	0	0	2.83	1.38	495	607	801	4000	1525	2012
	421.746	-	0	0	3.19	1.57	618	759	1001	5000	1906	2514
	421.766	-	0	0	3.66	1.54	779	956	1261	6300	2401	3168
	421.786	-	0	0	3.90	1.73	990	1214	1602	8000	3049	4023
	421.806	-	0	0	4.84	2.09	1237	1517	2002	10000	3811	5029
	421.826	-	0	-	4.92	2.13	1543	1896	2502	12500	4764	6286
120°	421.568	0	0	0	1.42	0.59	99	121	160	800	305	402
	421.608	0	0	0	1.61	0.59	124	152	200	1000	381	503
	421.628	0	0	0	1.69	0.75	155	190	250	1250	476	629
	421.648	0	0	0	2.09	0.87	198	243	320	1600	610	805
	421.668	0	0	0	2.17	0.94	247	303	400	2000	762	1006
	421.688	0	0	0	2.32	1.10	309	379	501	2500	953	1257
	421.708	0	0	0	2.60	1.26	390	478	631	3150	1201	1584
	421.728	-	0	0	2.83	1.38	495	607	801	4000	1525	2012
	421.748		0	0	3.19	1.57	618	759	1001	5000	1906	2514
	421.768	-	0	0	3.46	1.54	779	956	1261	6300	2401	3168
	421.788 421.808		0	0	3.90 4.25	1.73 2.09	990 1237	1214 1517	1602 2002	8000 10000	3049 3811	4023 5029
	421.808 421.828	-	0	0	4.25	2.09	1546	1896	253	12500	4764	6286
	421.020		U	U	4.70	2.13	1546	1090	253	12500	4/04	0200


 $B = bore diameter \cdot E = narrowest free cross section$

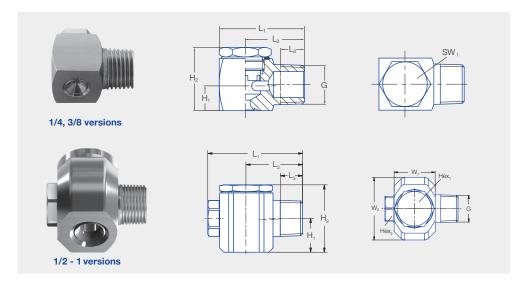

* Spray angle at p = 30 psi




Axial-flow full cone nozzles **Series 421**

Spray angle	Туре	Mat. no.	Fig.				Dimensio	ons [mm]				Flang	e hole
				H₁	H ₂	D ₁	D_2	D ₃	D ₄	D ₅	D _N	Number	D ₆
60°-90° 120° 120° 60°-120°	421.56x/ 421.60x	05.84 05.84 1Y.84 53.00	1 1 3 4	134 140 140 131	39 39 19 44	96 96 96 99	200 200 200 200	160 160 160 160	122 122 - -	121 121 - -	80 80 80 80	8 8 8	18 18 18 18
60°-120°	421.62x	05.84 1Y.84 53.00	1 3 4	156 156 156	28 20 53	113 108 117	220 220 220	180 180 180	158 - -	141 - -	100 100 100	8 8 8	18 18 18
60°-90° 120° 60°-120° 60°-120°	421.64x/ 421.66x	05.84 05.84 1Y.84 53.00	2 2 3 4	175 175 175 175	42 29 19 57	140 140 135 141	250 250 250 250	210 210 210 210	188 188 - -	166 166 - -	125 125 125 125	8 8 8 8	18 18 18 18
60°-120°	421.68x/ 421.70x	05.84 1Y.84 53.00	2 3 4	186 186 186	38 27 51	170 160 171	285 285 285	240 240 240	207 - -	195 - -	150 150 150	8 8 8	22 22 23
60°-120°	421.72x/ 421.74x	1Y.84 53.00	3 4	250 250	33 50	214 225	340 340	295 295	-	-	200 200	8 8	22 23
60°-120°	421.76x/ 421.78x	1Y.84 53.00	3 4	300 300	39 53	264 280	395 395	350 350	-	-	250 250	12 12	22 23
60°-120°	421.80x/ 421.82x	1Y.84 53.00	3 4	367 367	49 57	315 328	445 445	400 400	-	- 360	300 300	12 12	22 23

Example + Material no. = Ordering no. Туре for ordering: 421.564 = 421.564.05.84


Tangential-flow full cone nozzles Series 422 / 423 Metal version

Tangentially arranged liquid supply. Without swirl inserts. Non-clogging. Stable spray angle. Uniform spray.

Applications:

Cleaning and washing process, cooling of gaseous fluids and solids, surface spraying, spraying onto mats in air washers, improving of chemical reactions, continuous casting, foam control.

			Dim	ensio	ns [in]					
G (male NPT)	L ₁	L ₂	L ₃	H ₁	H ₂	W ₁	W ₂	Hex ₁	Hex ₂	Weight (lb.)
1/4"	1.1	.79	.38	.31	.83	.61	.63	.43	-	.097
3/8"	1.42	.98	.4	.43	1.05	.91	.87	.75	-	.222
1/2"	2.2	1.32	.52	.79	1.57	1.26	1.89	1.06	0.75	.816
3/4"	2.58	1.52	.57	.93	2.24	1.5	2.48	1.42	1.06	1.83
1"	3.35	1.91	.66	1.07	2.6	2.17	3.07	1.61	1.42	3.49

\$				(Orderir							diam.	passage				Flow Rate ons Per Mir	nute)				Diam. D 40 psi
	Type	Mat	no.				Conn	ection	1			e Gë	pass			liters per		,			ر.۱۱۱.) <u>ه</u> لخ	40 psi
Spray angle		316L	Brass 30	1/4"	³ /8"	1/2"	Male 3/4"	NPT 1"	11/4"	11/2"	2"	(in.)	(in.)	10 psi	20 psi	minute 2 bar	40 psi	60 psi	80 psi	100 psi	H=8"	H=20"
60°	422. 644	0	0	-	BE	-	-	-	-	-	-	.118	.118	.62	.88	4.0	1.2	1.5	1.8	2.0	9	20
90°	422. 406	0	0	вс	-	-	-	-	-	-	-	.059	.057	.16	.22	1.0	.31	.38	.44	.49	15	34
	422. 486	0	-	вс	-	-	-	-	-	-	-	.075	.071	.25	.35	1.6	.50	.61	.70	.78	15	34
	422. 566	0	0	вс	-	-	-	-	-	-	-	.091	.087	.39	.55	2.5	.78	.95	1.1	1.2	15	34
	422. 606	0	0	-	BE	-	-	-	-	-	-	.102	.099	.49	.69	3.2	.98	1.2	1.4	1.6	15	34
	422. 646 422. 766	0	0	-	BE BE	-	-	-	-	-	-	.118	.114	.62 1.2	.88 1.8	4.0 8.0	1.2 2.5	1.5 3.0	1.8	2.0 3.9	15 15	38
	422. 766	0	0	-	BE	-	-	-	-	-	-	.164 .229	.162 .225	2.5	3.5	16.0	5.0	6.1	3.5 7.0	7.9	15	38
	422, 966		_	[-	BG	-	-	-			.315	.315	3.9	5.5	25	7.8	9.5	11.0	12.3	15	38
	423, 006	Ö	_	_	_	BG	_	_	_	_	_	.343	.343	4.8	6.8	31	9.6	11.8	13.6	15.2	15	38
	423. 046	0	-	-	-	-	BK	-	-	-	-	.426	.402	6.2	8.8	40	12	15	18	20	15	38
	423. 086	0	-	-	-	-	BK	-	-	-	-	.449	.433	7.8	11.0	50	15.5	19.0	22	25	15	38
	423. 126	0	-	-	-	-	BK	-	-	-	-	.500	.485	9.8	13.8	63	19.5	24	28	31	15	38
	423. 146	0	-	-	-	-	-	ВМ	-	-	-	.552	.532	11.0	15.6	71	22	27	31	35	15	38
	423. 206	0	-	-	-	-	-	ВМ		-	-	.670	.630	15.5	21.9	100	31	38	44	49	15	38
	423. 286	0	-	-	-	-	-	-	BP	-	-	.748	.748	25.0	35.0	160	50	61	71	79	15	38
	423. 366	0	-	-	-	-	-	-	-	BR	-	.875	-	38.0	54.0	246	76	93	107	120	15	38
	423. 406 423. 446		-	-	-	-	-	-	-		BV BV	-	-	49.0 62.0	69.0 88.0	315 400	98 124	120 152	139 175	155 196	15 27	38
	423. 440	U	_	-		-	-	-	-	-	DV	_	-	02.0	00.0	400	124	152	1/5	190	21	30

Different metallurgies may be available upon request.

Continued on next page.

Example + Material no. + Conn. = Ordering no. + BE = 422. 848. 1Y. BE for ordering: 422.848 + 1Y

Tangential-flow full cone nozzles Series 422 / 423 Metal version

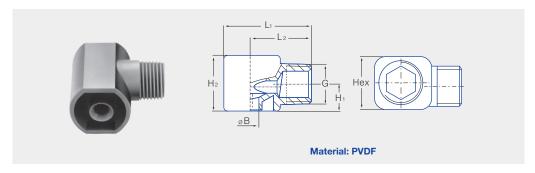
4				(Orderir	ng no.						Ę.	age				Flow Rate Ins Per Mi				, ,	Diam. D
1 ×	Type	Mat	no.			(Conn	ection	1			diam.	pass			,	i is rei ivii	i lute)	ı		1 ` ′ —	40 psi
Spray angle		AISI 316L	Brass		BE BE BG BG BG BG BG							rifice	Free pa	10	20	liters per minute	40	60	80	100		
Sp		1Y	30	1/4"	 BE				11/4"	11/2"	2"	(in.)	(in.)	10 psi	psi	2 bar	psi	psi	psi	psi	H=8"	H=20"
120°	422. 568	0	0	ВС	-	-	-	-	-	-	-	.091	.087	.39	.55	2.5	.78	.95	1.1	1.2	27	48
	422. 728	0	0	-	3/8" 1/2" 3/4" 1" 11/ 				-	-	-	.146	.142	.98	1.4	6.3	2.0	2.4	2.8	3.1	27	63
	422. 808	0	-	-	BE BE BE				-	-	-	.183	.181	1.6	2.2	10.0	3.1	3.8	4.4	4.9	27	63
	422. 848	0	0	-	Male NPT " 3/8" 1/2" 3/4" 1" 11 C				-	-	-	.205	.201	1.9	2.7	12.5	3.9	4.8	5.5	6.1	27	63
	422. 888	0	0	-	BE	-	-	-	-	-	-	.229	.225	2.5	3.5	16.0	5.0	6.1	7.0	7.9	27	63
	422. 928	0	-	-	-	BG	-	-	-	-	-	.288	.288	3.1	4.4	20	6.2	7.6	8.8	9.8	27	63
	422. 968	0	0	-	-	BG	-	-	-	-	-	.315	.315	3.9	5.5	25	7.8	9.5	11.0	12.3	27	63
	423. 008	0	-	-	-	BG	-	-	-	-	-	.343	.343	4.8	6.8	31	9.6	11.8	13.6	15.2	27	63
	423. 128	0	-	-	BE BE BG BG BG			-	-	-	.500	.485	9.8	13.8	63	19.5	24	28	31	27	63	
	423. 208	0	-	-	-	-	-	ВМ	-	-	-	.670	.630	15.5	21.9	100	31	38	44	49	27	63

Example Type + Material no. + Conn. = Ordering no. + BE = 422.848.1Y.BE for ordering: 422.848 + 1Y

Tangential-flow full cone nozzles

Plastic version Series 422 / 423

Ordering no.



Spray Diameter D

Tangentially arranged liquid supply. Without swirl inserts. Non-clogging. Stable spray angle. Uniform spray.

Applications:

Cleaning and washing processes, surface spraying, bottle cleaning, keg cleaning, sausage showers, foam control, degassing, pasteurization.

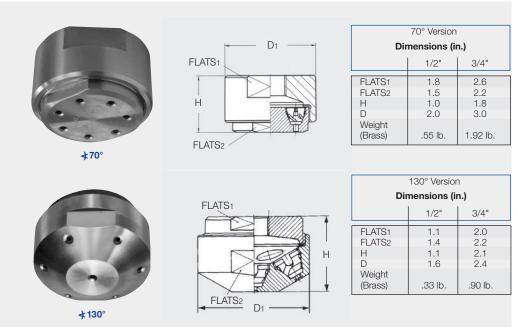
Flow Rate

	Din	nensions	s [in]			Weight
Inlet	L ₁	L ₂	H ₁	H ₂	Hex	(lb.)
1/4 NPT	1.10	.79	.31	.63	5/8	.02
3/8 NPT	1.42	.98	.44	.91	7/8	.04
1/2 BSPT	1.95	1.32	.76	1.50	1-5/16	.09
3/4 BSPT	2.30	1.52	.96	1.97	1-5/8	.11

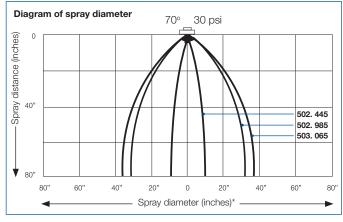
angle		Ordeni	19 110.				-:	l ge			(Gallons P	or Minutal					40
angle		Mat.		Conn	ection		dian	passage			(GailOHS F	ei iviii lute)				(in.) @	40 psi
	Туре	5E	Male	NPT	Ma BS	ale SPT	Orifice diam.	Free pa			liters per minute		1	1	1	<u>E</u>	
		PVDF	1/4"	3/8"	1/2"	3/4"	(in.)	(in.)	10 psi	20 psi	2 bar	40 psi	60 psi	80 psi	100 psi	H = 8"	H = 20"
60°	422.724	0	-	BE	-	-	.142	.142	.98	1.4	6.3	2.0	2.4	2.8	3.1	9	20
90°	422.406	0	ВС	-	-	-	.059	.057	.16	.22	1.0	.31	.38	.44	.49	15	34
	422.566	0	ВС	-	-	-	.075	.071	.25	.35	1.6	.50	.61	.70	.78	15	34
	422.606	0	-	BE	-	-	.091	.087	.39	.55	2.5	.78	.95	1.1	1.2	15	34
	422.646	0	-	BE	-	-	.102	.099	.49	.69	3.2	.98	1.2	1.4	1.6	15	34
	422.726	0	-	BE	-	-	.118	.114	.62	.88	4.0	1.2	1.5	1.8	2.0	15	38
	422.806	0	-	BE	-	-	.146	.142	.98	1.4	6.3	2.0	2.4	2.8	3.1	15	38
	422.846	0	-	BE	-	-	.183	.181	1.6	2.2	10.0	3.1	3.8	4.4	4.9	15	38
	422.886	0	-	BE	-	-	.205	.201	1.9	2.7	12.5	3.9	4.8	5.5	6.1	15	38
	422.926	0	-	-	CG	-	.229	.225	2.5	3.5	16.0	5.0	6.1	7.0	7.9	15	38
	422.966	0	-	-	CG	-	.288	.288	3.1	4.4	20	6.2	7.6	8.8	9.8	15	38
	423.006	0	-	-	CG	-	.315	.315	3.9	5.5	25	7.8	9.5	11.0	12.3	15	38
	423.126	0	-	-	-	CK	.473	.473	9.8	13.8	63	19.5	24	28	31	15	38
120°	422.408	0	ВС	-	-	-	.059	.057	.16	.22	1.0	.31	.38	.44	.49	27	63
	422.448	0	ВС	-	-	-	.065	.063	.19	.26	1.2	.37	.46	.53	.59	27	63
	422.488	0	ВС	-	-	-	.075	.071	.25	.35	1.6	.50	.61	.70	.78	27	63
	422.568	0	ВС	-	-	-	.091	.087	.39	.55	2.5	.78	.95	1.1	1.2	27	63
	422.728	0	-	BE	-	-	.146	.142	.98	1.4	6.3	2.0	2.4	2.8	3.1	27	63
	422.888	0	-	BE	-	-	.229	.225	2.5	3.5	16.0	5.0	6.1	7.0	7.9	27	63
	423.008	0	-	-	CG	-	.343	.343	4.8	6.8	31	9.6	11.8	13.6	15.2	27	63
	423.128	0	-	-	-	CK	.500	.485	9.8	13.8	63	19.5	24	28	31	27	63

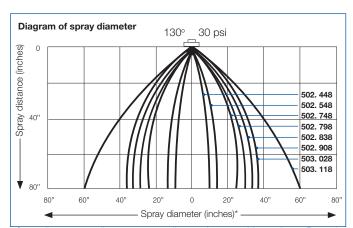
 $B = bore diameter \cdot E = narrowest free cross section$

Example Type + Material-no. + Code = Ordering no. of ordering: 422.724 + 5E + BE = 422.724.5E.BE


Cluster head nozzles Series 502 / 503

Fine full cone atomization with the aid of several hollow cones spraying into one another.


Applications:

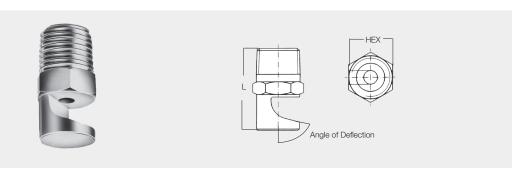

Cooling of gaseous and solid material, desuperheating, chlorine precipitation, absorption as well as for improvement of chemical reaction by enlarging the contact area.

d		Orderin			diam.	age					√Rate Per Minute	١				Diam. D
1	Type	Mater	ial no.	Connection	<u>6</u>	pass			P4	(Galloris I	ei iviii iute)			(In.) @	30 psi
Spray angle		17 316 SS	Brass	Female NPT 1/2" 3/4"	(in.)	(in.)	10 psi	20 psi	liters per minute 2 bar	30 psi	40 psi	60 psi	80 psi	100 psi	H=40"	H=80"
70°	502, 445	_	0	BH -	.039	.020	.19	.27	1.3	.35	.39	.48	.55	.61	16	16
	502, 985	0	_	- BL	.138	.079	4.3	6.1	28	7.5	8.7	10.6	12.3	13.7	47	59
	503.065	0	_	- BL	.197	.079	7.0	9.9	45	12.1	14.0	17.1	19.8	22	47	70
	503. 115	0	0	- BL	.236	.079	9.2	13.1	60	16.1	18.7	23	26	29	51	78
130°	502. 448	0	0	BH BL	.039	.020	.19	.27	1.3	.35	.39	.48	.55	.61	20	20
	502. 548	0	0	BH BL	.071	.020	.35	.49	2.2	.59	.70	.86	.99	1.1	27	27
	502. 588	0	0	- BL	.039	.039	1.6	2.3	2.8	.87	.87	1.1	1.2	1.4	32	35
	502. 748	0	0	- BL	.079	.079	1.2	1.6	7.1	1.9	2.2	2.7	3.1	3.5	43	47
	502. 798	0	-	- BL	.099	.079	1.5	2.1	9.5	2.6	3.0	3.6	4.2	4.7	47	51
	502.838	0	0	- BL	.118	.079	1.8	2.6	11.8	3.2	3.7	4.5	5.2	5.8	55	63
	502. 908	0	0	- BL	.158	.079	2.8	3.9	18.0	4.8	5.6	6.8	7.9	8.8	59	70
	503. 028	0	0	- BL	.158	.079	5.5	7.7	36	9.7	11.0	13.5	15.6	17.4	63	70
	503. 118	0	0	- BL	.236	.079	9.2	13.1	60	16.1	18.7	23	26	29	79	118

Example Type + Material no. + Conn. = Ordering no. for ordering: 503.028 + 17 + BL = 503.028.17.BL

* Spray diameter coordinates represent distance from zero (0) coordinate. For each curve, add both coordinate values to obtain spray diameter.

 $\sqrt{\frac{p_2}{p_2}}$


Tongue-type deflector flat fan nozzles **Series 686**

Deflector produces moderate impact with a very wide spray angle. Clog resistant. Even distribution.

Applications:

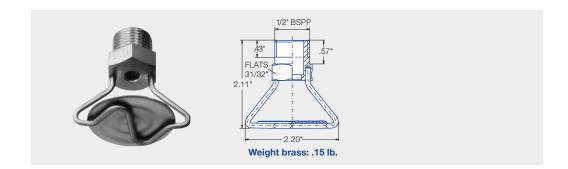
Foam control for storage tanks, wastewater treatment plants, dust suppression, light washing, spray cooling, degreasing and phosphating.

Dime	ensions (in.)	
Inlet (NPT)	L	HEX	Wt. (lb.)
1/8	.91	7/16	.03
1/4	1.10	9/16	.06
3/8	1.26	11/16	.09
1/2	1.58	7/8	.20

7	angle			Ord	dering	no.				diam.					w Rate				Spray Width B
\$	an	Type	Ma	aterial	no.		Conne	ection		<u>Ö</u>				(Gallons	Per Minut	e)			(in.) @ 30 psi
<u>~ o</u>	Deflector		316 SS	Brass	PVDF		Male I	NPT		Orifice			liters per minute						
Spray angle	Defle		17	30	<u>≥</u> 5E	1/8"	1/4"	3/8"	1/2"	(in.)	10 psi	20 psi	2 bar	30 psi	40 psi	60 psi	80 psi	100 psi	H=10"
90°	53°	686, 366	_	0	_	ВА	_	_	_	.031	.10	.14	.63	.17	.20	.24	.28	.31	20
30	75°	686. 406		0		BA				.039	.16	.22	1.0	.27	.31	.38	.44	.49	21
	40°	686. 686		o		-	ВС			.094	.78	1.1	5.0	1.3	1.6	1.9	2.2	2.5	21
	40°	686, 726	_	0	_	ВА	-	_	-	.106	.98	1.4	6.3	1.7	2.0	2.4	2.8	3.1	21
	40°	686, 806	_	0	_	-	вс	_	_	.133	1.6	2.2	10.0	2.7	3.1	3.8	4.4	4.9	21
	40°	686. 886	0	_	_	_	BC	_	-	.165	2.5	3.5	16.0	4.3	5.0	6.1	7.0	7.8	21
	40°	686. 926	Ō	_	_	_	-	BE	-	.185	3.1	4.4	20	5.4	6.2	7.6	8.8	9.8	21
140°	75°	686, 368	0	0	-	BA	-	-	-	.032	.10	.14	.63	.17	.20	.24	.28	.31	54
		686, 408	0	0	_	ВА	-	_	_	.039	.16	.22	1.0	.27	.31	.38	.44	.49	54
		686. 448	0	0	_	ВА	вс	-	-	.047	.19	.27	1.3	.35	.39	.48	.55	.61	54
		686. 488	0	0	-	BA	ВС	-	-	.051	.25	.35	1.6	.43	.50	.61	.70	.78	54
		686. 528	0	0	-	BA	ВС	-	-	.059	.31	.44	2.0	.54	.62	.76	.88	.98	54
		686. 568	0	0	0	BA	BC*	-	-	.067	.39	.55	2.5	.67	.78	.95	1.1	1.2	54
		686. 608	0	0	-	BA	BC	-	-	.075	.49	.69	3.2	.86	.98	1.2	1.4	1.5	54
		686. 648	0	0	-	-	ВС	-	-	.087	.62	.88	4.0	1.1	1.2	1.5	1.8	2.0	54
		686. 688	0	0	-	BA	ВС	-	-	.095	.78	1.1	5.0	1.4	1.6	1.9	2.2	2.5	54
		686. 728	-	0	-	BA	ВС	-	-	.106	.98	1.4	6.3	1.7	2.0	2.4	2.8	3.1	54
		686. 768	0	0	-	BA*	BC	-	-	.118	1.2	1.8	8.0	2.2	2.5	3.0	3.5	3.9	54
		686. 808	0	0	-	BA	ВС	-	-	.134	1.6	2.2	10.0	2.7	3.1	3.8	4.4	4.9	54
		686. 828	0	0	-	BA	ВС	-	-	.142	1.7	2.5	11.2	3.0	3.5	4.3	4.9	5.5	54
		686. 848	0	0	-	BA*	BC	-	-	150	1.9	2.7	12.5	3.4	3.9	4.8	5.5	6.1	54
		686. 868	0	0	-	-	ВС	-	-	.158	2.2	3.1	14.0	3.8	4.3	5.3	6.1	6.9	54
		686. 888	0	0	-	-	ВС	-	-	165	2.5	3.5	16.0	4.3	5.0	6.1	7.0	7.8	54
		686. 908	0	0	-	-	ВС	-	-	.177	2.8	3.9	18.0	4.8	5.6	6.8	7.9	8.8	54
		686. 928	0	-	-	-	-	BE	-	.185	3.1	4.4	20	5.4	6.2	7.6	8.8	9.8	54
		686. 968	0	0	-	-	-		BG	.209	3.9	5.5	25	6.7	7.8	9.5	11.0	12.3	54
		686. 988	0	0	-	-	-	BE	BG	.221	4.3	6.1	28	7.5	8.7	10.6	12.3	13.7	54

^{*} Only available in 316 SS (material no. 17)

Example Type + Material no. + Conn. = Ordering no. for ordering: 686. 908 + 17 + BC = 686. 908. 17. BC



Full cone spray. Non clogging nozzle without swirl insert.

Applications:

Fire fighting and broadcast spraying, wide area spray.

\$	Orde	ering no.							v Rate Per Minute)				Spray Dia	
	Type	Mater	ial no.	dian			P4	(Gallotto	or ivilitato)				ا (۱۱.) ⊌ ا	40 psi
Spray angle		16 SS	Brass	Orifice			liters per minute							1
کے قر	Connection:	31	Bra	Õ	10	20	2	40	60	80	100	150	1	D
0, 10	1/2" Male BSPP	17¹	30	(in.)	psi	psi	bar	psi	psi	psi	psi	psi	H=40"	H=120"
180°	524. 809	0	0	.158	1.6	2.2	10	3.1	3.8	4.4	4.9	6.0	18	21
	525. 049	0	0	.315	6.2	8.8	40	12.4	15.2	17.6	19.6	24	33	43
	525. 109	-	0	.366	8.8	12.5	57	17.7	22	25	28	34	33	44
	525. 169	-	0	.429	12.6	17.8	81	25	31	36	40	49	35	44
	525. 229	-	0	.481	17.4	25	112	35	43	49	55	67	22	34
	525. 269	0	0	.485	22	31	140	43	53	61	69	84	17	33

¹ We reserve the right to deliver 316 SS or 316Ti SS under the material no. 17.

Version with dust protection cap on request.

Example Туре + Material-no. = Ordering no. of ordering: 524.809 524.809.30

Rotating cleaning nozzle »MiniSpinner« Series 5MI

- Entirely made from stainless steel/Hastelloy
- Self-rotating
- Efficient slot design
- Modern double ball bearing

Max. tank diameter: $9 \ \mathrm{ft}$

Materials:

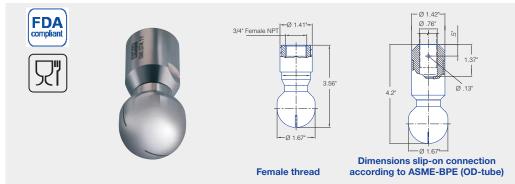
316L SS, 440C SS, Hastelloy C22, Hastelloy C276

Max. temperature: 284 °F

Recommended operating pressure: 30 psi

Installation:

Operation in every direction is possible


Filtration:

Line strainer with a mesh size of 0.1 mm/170 mesh

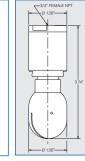
Bearing:

Double ball bearing made of 440C SS Double ball bearing made of C276

Spray angle		Ordering I	no.		Free Passage			Flow Rat	Έ		
	Type	Material no.	Conn	ection	Ø (in.)		(Gal	lons Per M			ank r [ft]
/ \		316L SS	3/8" Female NPT	1/2" OD Slip-on		20 psi	30 psi	liters per minute 2 bar	40 psi	60 psi	Max. tank diameter [ff]
eu.	5MC.022	0	BF	TF05	.04	5	6.2	23	7	8.6	-
	5MC. 042	0	BF	TF05	.118	8.8	10.8	40	12.4	15.2	-
	5MC. 004	0	BF	TF05	.031	7.0	8.6	32	9.9	12.2	6
	5MC. 069	0	BF	TF05	.035	5.5	6.7	25	8	10	5.6
	5MC. 049	0	BF	TF05	.035	8.6	10.5	39	12.1	14.8	6

Example Type + Conn. = Ordering no. for ordering: 5Ml. 162. 1Y. + BH = 5Ml. 162. 1Y. BH

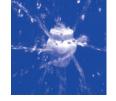
Please note: The nozzles with a slip-on connection type fitting may have a higher flow rate than listed due to the self-flushing design around the customer's tube which is inserted into the nozzle socket. We do not recommend operation of these products with compressed air, steam, or gases. To protect the products' inner workings, we suggest use of a line strainer with a 170 mesh size.


Bearing:

Double ball bearing

Filtration:

Line strainer with 170 mesh size



п										
	Spray angle	Ordering	no.	Free			Flow Rate	auto)		¥Ξ
ı			Conn.	Passa-		(Gaile	IIIS FEI IVIII	iutej		tanl
	A	Туре	3/4" Female NPT	ge (in.)	20 psi	30 psi	liters per minute 2 bar	40 psi	60 psi	Max. ta diameter
	360°	5MI. 089. 17	BL	.038	11	13.2	49	15	19	6
		5MI. 139. 17	BL	.059	15	18.5	69	21	26	7

*

Rotating cleaning nozzle »Teflon® Whirly« Series 573 / 583

- Self rotating
- Rotating solid jets
- Recommended for tanks made of glass and enamel
- 3A® version available

Max tank diameter:

11 ft

Materials:

PTFE (Teflon®)

Max. temperature:

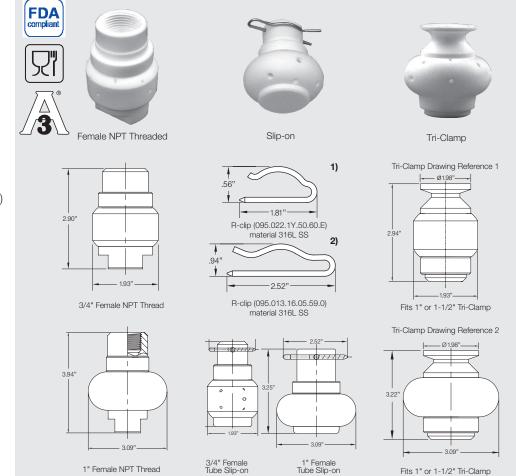
203 °F

(Versions for use with higher temperature (398 °F) on request)

Recommended operating pressure:

30 psi

Installation:


Operation in every direction is possible

Filtration:

Line strainer with a mesh size of 0.3 mm/50 mesh

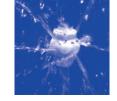
Bearing:

Slide bearing made of PTFE

Please note: We do not recommend operation of these products with compressed air, steam, or gases. To protect the products' inner workings, we suggest use of a line strainer with a 50 mesh size. For further information, please contact your representative or Lechler.

The nozzles with a slip-on connection type fitting may have a higher flow rate than listed due to the self-flushing design around the customer's tube which is inserted into the nozzle socket.

	Spray angle		Туре		Ordering	no. Connection	ı		Free Pas- sage (in.)			Flow Rate ons Per M			for fe	nsions emale version	ank ır [ft]
t	M	R-clip		3/4" Female NPT	1" Female NPT	³/₄" Slip-on	1" Slip-on	1 ¹ /2" Tri- Clamp		20 psi	30 psi	liters per minute 2 bar	40 psi	60 psi	Height H [in]	Diame- ter D [in]	Max. tank diameter [ft]
n, [270°	1)	583. 116. 55	BL	-	TF07*	-	15	.094	15	18	67	21	26	2.91	1.93	8.2
		1)	583. 266. 55	BL	-	TF07*	-	15	.133	32	39	145	45	55	2.91	1.93	9.2
		1)	573. 266. 55	BL	-	TF07*	-	15	.133	32	39	145	45	55	2.91	1.93	9.2
Ī	360°	1)	583. 119. 55	BL	-	TF07*	-	15	.071	13	16	58	18	22	2.91	1.93	7.9
		1)	583. 209. 55	BL	-	TF07*	-	15	.138	22	27	100	31	38	2.91	1.93	8.2
n		1)	583. 269. 55	BL	-	TF07*	-	15	.189	32	39	145	45	55	2.91	1.93	9.2
ıd		2)	583. 279. 55	-	BN	-	TF10*	15	.146	33	40	150	47	57	3.94	3.09	9.8
		2)	583. 349. 55	-	BN	-	TF10*	15	.220	50	61	226	70	86	3.94	3.09	10.5


Example Type + Conn. = Ordering no. for ordering: 583. 266. 55. + BL = 583. 266. 55. BL

^{**} Contact Lechler for maximum ambient temperature.

^{*} The slip-on version has been authorized to use the 3-A® Symbol by the 3-A® Sanitary Symbol Council Administrative Council for Spray Cleaning Devices (78-01).

Rotating cleaning nozzle »Teflon® Hi Temp Whirly« Series 599

- Self rotating
- Rotating solid jets
- Recommended for tanks made of glass and enamel
- Withstands high temperatures

Max. tank diameter: 8.2 ft

Materials:

PTFE (Teflon®)

Max. temperature:

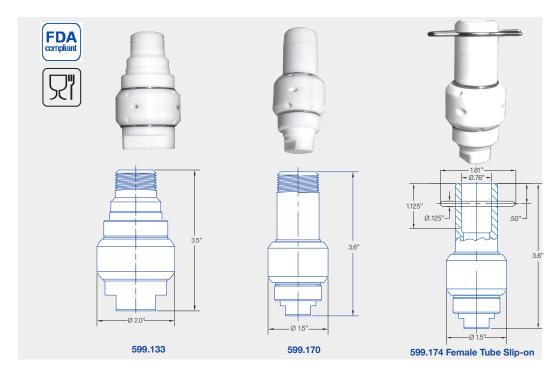
274 °F

Recommended operating pressure:

30 psi

Installation:

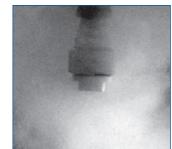
Operation in every direction is possible


Filtration:

Line strainer with a mesh size of 0.3 mm/50 mesh

Bearing:

Slide bearing made of PTFE


Spray angle	Ordering no.	Conr	nection		Flow Rate (Gallons Per Minute)						
		3/ ₄ " Male NPT	3/4" OD Female Slip-on	20 psi	Max. tank diameter [ft]						
360°	599. 133. 55	ВК	-	22	27	100	31	38	8.2		
	599. 170. 55	вк	-	19	23	84	26	32	8		
	599. 174. J7	-	TF07	19	8						

Please note: We do not recommend operation of these products with compressed air or gases. However, these products have been shown to be suitable for spraying low pressure steam (refer to **Applications** above). To protect the products' inner workings when spraying liquid, we suggest use of a line strainer with a 50 mesh size. For further information, please contact your representative or Lechler.

The nozzles with a slip-on connection type fitting may have a higher flow rate than listed due to the self-flushing design around the customer's tube which is inserted into the nozzle socket.

Example Type + Conn. = Ordering no. for ordering: 599. 170. 55. + BK = 599. 170. 55. BK

Hastelloy® is a registered trademark of Haynes International Inc.

PTFE Whirly spraying steam

Rotating cleaning nozzle "Whirly 2.0" Series 5W9

- Popular and proven design
- Powerful flat jets
- Wide range of flow rates

Recommended operating pressure:

30 psi

Max. fluid temperature: 284°F

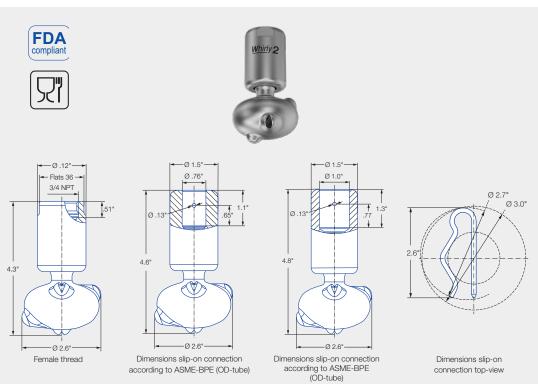
Material:

Stainless steel 316L SS PEEK

Bearing:

Double ball bearing

Installation:


Operates in every direction

Filtration:

Line strainer with a mesh size of 0.1 mm/170 mesh size

Spray an-

gle

Free

Passage

V water [gal/min]

The maximum tank diameter shown above applies for the recommended operating pressure and is indicative only. The cleaning result is also affected by the type of soiling.

TF10

Operation with compressed air only for short-term usage. Operation above the recommended operating pressure means higher wear and smaller droplets. This might have adverse effects on the cleaning result.

Slip-on information: - R-clip made of stainless steel 316L SS is included(Ordering no.: 095.022.1Y.50.60.E).

- Depending on diameter of the adapter the flow rate can increase due to leakage between connecting pipe and rotating cleaning nozzle.

20

31.9

39 1

45

145

55.2

98

Example Type Conn. Ordering no. = for ordering: 569. 055. 1Y. + 569. 055. 1Y. BL

BL

TF07

5W9.279.1Y

Ordering no.

Rotating cleaning nozzle »Gyro« Series 577

- Self rotating
- Effective flat jet nozzles
- Large free cross sections, less prone to clogging

Max. tank diameter: 40 ft

Materials:

316L SS, PTFE

Max. temperature: 194 °F

Recommended

operating pressure: 40 psi

Installation:

Vertically facing downward

Filtration:

Line strainer with a mesh size of 0.3 mm/50 mesh

Bearing:

Slide bearing made of PTFE

Accessories:

Spare parts set consisting of: top seal, bottom seal, bolt, nut, sleeve, instructions for use

Spray angle	Orderir	ng no.			Flow	Rate		Dimer	nsions
	Туре	Conn	ection		(Gallons P	er Minute)			
		1" NPT	2" NPT	20 psi	liters per minute 2 bar	40 psi	60 psi	Length (in.)	Width (in.)
180°	577. 283. 1Y	BN	-	36	163	51	62	2.8	4.6
	577. 363. 1Y	BN	-	57	258	80	98	2.8	4.6
	577. 403. 1Y	-	BW	71	322	100	122	4.1	6.1
	577. 433. 1Y	-	BW	85	386	120	147	4.1	6.1
	577. 523. 1Y	-	BW	140	639	199	243	4.1	6.1
180°	577. 284. 1Y	BN	-	36	161	51	62	2.8	4.6
	577. 364. 1Y	BN	-	57	258	80	98	2.8	4.6
	577. 404. 1Y	-	BW	71	322	100	122	4.1	6.1
	577. 434. 1Y	-	BW	85	386	120	147	4.1	6.1
	577. 494. 1Y	-	BW	145	538	167	205	4.1	6.1
270°	577. 285. 1Y	BN	-	36	161	51	62	2.8	4.6
	577. 365. 1Y	BN	-	57	258	80	98	2.8	4.6
	577. 405. 1Y	-	BW	71	322	100	122	4.1	6.1
	577. 435. 1Y	-	BW	85	386	120	147	4.1	6.1
	577. 495. 1Y	-	BW	145	538	167	205	4.1	6.1
360°	577. 289. 1Y	BN	-	36	161	51	62	2.8	4.6
	577. 369. 1Y	BN	-	57	258	80	98	2.8	4.6
	577. 409. 1Y	-	BW	71	322	100	122	4.1	6.1
	577. 439. 1Y	-	BW	85	386	120	147	4.1	6.1
	577. 499. 1Y	-	BW	145	538	167	205	4.1	6.1

The PTFE bearings and other wear parts can be replaced easily to extend the life of the unit. A rebuild kit contains: Bearing sleeves, bolt, nut, spacer, and complete instructions.

Size	Product code
1"	057.701.55.000
2"	057.702.55.000

Contents of Gyro rebuild kit

Please note: We do not recommend operation of these products with compressed air, steam, or gases. For further information, please contact Lechler.

Example	Туре	+	Conn.	=	Ordering no.
for ordering:	577. 434. 1Y	+	BW	=	577. 434. 1Y. BW

^{*} Contact Lechler for maximum ambient temperature.

*

Rotating cleaning nozzle »XactClean® HP« Series 5S2 / 5S3

- Controlled rotation
- Powerful flat jet nozzles
- Very efficient tank cleaning nozzle

Max. tank diameter: 26 ft

Materials:

316L SS, 316 SS, 632 SS, PEEK, PTFE, Zirconium oxide, EPDM

Max. temperature:

203°F

Recommended operating pressure:

75 psi

Installation:

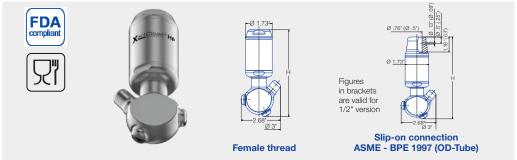
Operation in every direction is possible

Filtration:

Line strainer with a mesh size of 0.3 mm/50 mesh

Bearing:

Double ball bearing


Rotation monitoring sensor:

Sensor compatible, please ask for more information.

Operation with compressed air only for short-term usage. Operation above the recommended operating pressure means higher wear and smaller droplets. This might have adverse effects on the cleaning result.

Slip-on information:

- R-clip made of stainless steel 316L SS is included (Ordering number: 095.022.1Y.50.60.E (TF07), 095.013.1E.05.59.0 (TF05)).
- Depending on diameter of the adapter the flow rate can increase due to leakage between connecting pipe and rotating cleaning nozzle.

Nozzle dimensions [in]

Connection	Max. Height H [in]
BF	5.83
BH	5.87
BL	5.47
BN	5.47
TF05	5.91
TF07	6.46

Spray angle			C	Ordering	no.			Free Pas-			ow Rate			J æ
	Type			С	onnectio	n		sage		(Gallor	is Per M	1inute)		tank ter [i
A		3/8" Female NPT	1/2" Female NPT	3/4" Female NPT	1" Female NPT	1/2" OD Slip-on	3/4" OD Slip-on	(in.)	2 bar	30 psi	40 psi	75 psi	145 psi	Max. tank diameter [ft]
180°	5S2.953.1Y	BF	ВН	-	-	TF05	-	.08	25	6.6	7.8	10.6	15.1	11.5
	5S3.053.1Y	-	ВН	-	-	TF05	-	.08	41	10.8	12.8	17.2	24.3	13
	5S3.113.1Y	-	ВН	BL	-	-	TF07	.08	60	15.9	18.4	24.8	35.1	20
	5S3.183.1Y	-	-	BL	-	-	TF07	.08	89	23.5	27.7	37.3	52.6	23
	5S3.233.1Y	-	-	BL	-	-	TF07	.08	111	29.3	34.3	46.2	65.5	25
	5S3.263.1Y	-	-	BL	BN	-	TF07	.08	135	35.7	41.8	56.3	79.5	26
180°	5S2.954.1Y	BF	ВН	-	-	TF05	-	.08	25	6.6	7.8	10.6	15.1	11.5
	5S3.054.1Y	-	ВН	-	-	TF05	-	.08	41	10.8	12.8	17.2	24.3	13
	5S3.114.1Y	-	вн	BL	-	-	TF07	.08	60	15.9	18.4	24.8	35.1	20
	5S3.184.1Y	-	-	BL	-	-	TF07	.08	89	23.5	27.7	37.3	52.6	23
	5S3.234.1Y	-	-	BL	-	-	TF07	.08	111	29.3	34.3	46.2	65.5	25
	5S3.264.1Y	-	-	BL	BN	-	TF07	.08	135	35.7	41.8	56.3	79.5	26
270°	5S2.955.1Y	BF	ВН	-	-	TF05	-	.08	25	6.6	7.8	10.6	15.1	11.5
	5S3.055.1Y	-	вн	-	-	TF05	-	.08	41	10.8	12.8	17.2	24.3	13
	5S3.115.1Y	-	ВН	BL	-	-	TF07	.08	60	15.9	18.4	24.8	35.1	20
	5S3.185.1Y	-	-	BL	-	-	TF07	.08	89	23.5	27.7	37.3	52.6	23
	5S3.235.1Y	-	-	BL	-	-	TF07	.08	111	29.3	34.3	46.2	65.5	25
	5S3.265.1Y	-	-	BL	BN	-	TF07	.08	135	35.7	41.8	56.3	79.5	26
270°	5S2.956.1Y	BF	ВН	-	-	TF05	-	.08	25	6.6	7.8	10.6	15.1	11.5
	5S3.056.1Y	-	вн	-	-	TF05	-	.08	41	10.8	12.8	17.2	24.3	13
	5S3.116.1Y	-	ВН	BL	-	-	TF07	.08	60	15.9	18.4	24.8	35.1	20
KATAN	5S3.186.1Y	-	-	BL	-	-	TF07	.08	89	23.5	27.7	37.3	52.6	23
	5S3.236.1Y	-	-	BL	-	-	TF07	.08	111	29.3	34.3	46.2	65.5	25
	5S3.266.1Y	-	-	BL	BN	-	TF07	.08	135	35.7	41.8	56.3	79.5	26
360°	5S2.959.1Y	BF	ВН	-	-	TF05	-	.07	25	6.6	7.8	10.6	15.1	11.5
	5S3.059.1Y	-	вн	-	-	TF05	-	.08	41	10.8	12.8	17.2	24.3	13
	5S3.119.1Y	-	ВН	BL	-	-	TF07	.08	60	15.9	18.4	24.8	35.1	20
[XIII]	5S3.189.1Y	-	-	BL	-	-	TF07	.08	89	23.5	27.7	37.3	52.6	23
	5S3.239.1Y	-	-	BL	-	-	TF07	.08	111	29.3	34.3	46.2	65.5	25
	5S3.269.1Y	-	-	BL	BN	-	TF07	.08	135	35.7	41.8	56.3	79.5	26

Rotating cleaning nozzle »XactClean® HP 2« **Series 5S6 / 5S7**

Features:

- · Flat fan nozzle with high impact
- Uniform cleaning
- · High efficiency due to controlled rotation
- High operating reliability thanks to robust drive unit

Series 5S6/5S7

Technical data:

Maximum operating temperature 150 °C

Maximum ambient temperature 150 °C

Installation

Operation in every installation position

Bearing Double ball bearing

Material

Weight 650-900 g

Surface quality Ra \leq 0.8 μ m

Surface quality $Ra \le 1.6 \, \mu m$

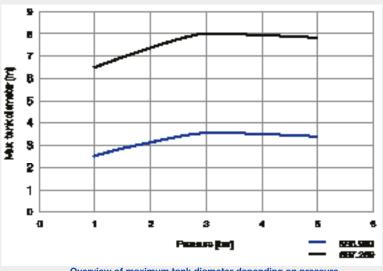
Steam suitability Suitable

Recommended filter Line strainer with a mesh size of 0.3 mm/50 mesh

Recommended operating pressure

Rotation monitoring Sensor-compatible, information: see pages 96-97

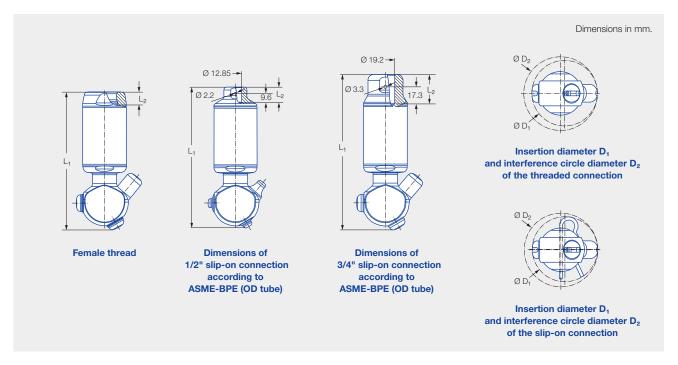
Maintainable



Adapter 3/8 BSPP, 1/2 BSPP, 3/4 BSPP and 1 BSPP are compatible with HygienicFit

Max. tank diameter

The specified maximum tank diameter applies to the recommended operating pressure and is indicative only. The type of soiling is also decisive for the cleaning result.


Overview of maximum tank diameter depending on pressure

Rotating cleaning nozzle »XactClean® HP 2« Series 5S6 / 5S7

				Dimensions [mm]	
	Connection	L ₁	L ₂	Insertion diameter D ₁	Interference circle diameter D ₂
AF	3/8 BSPP	141.0	9.0	50.0-66.0	50.0–67.0
AH	1/2 BSPP	143.0	13.0	50.0-74.0	50.0-76.0
AL	3/4 BSPP	143.0	13.2	50.0-79.0	50.0-81.0
AN	1 BSPP	140.0	16.5	51.0-79.0	53.0-80.0
TF05	1/2" slip-on connection	150.0	16.0	52.0-66.0	50.0-67.0
TF07	3/4" slip-on connection	160.0	30.0	66.0–79.0	50.0–81.0

Spray			(Order no.				Narrowest	v	/ water	· [l/min	1		Max. tank diameter
angle				Con	nection			cross- section		water	[./	',	V water	
	Туре					1/2"	3/4"	Ø [mm]	p [bar] (p _{max} = 15 ba			bar)		[m]
		3/8 BSPP	1/2 BSPP	3/4 BSPP	1 BSPP	slip-on	slip-on connection	[11111]	2.0	3.0	5.0	10.0	at 5 bar [m³/h]	
180°	5S6.963.1Y	AF	AH			TF05		1.7	25	31	40	57	1.9	3.5
	5S7.043.1Y		AH				TF07	2.0	41	50	65	92	3.0	4.0
	5S7.113.1Y		AH	AL			TF07	2.0	60	73	94	133	4.4	6.0
	5S7.183.1Y			AL			TF07	2.0	89	109	141	199	6.5	7.0
	5S7.223.1Y			AL			TF07	2.0	111	136	175	248	8.2	7.5
	5S7.253.1Y			AL	AN		TF07	2.0	135	165	213	301	9.9	8.0
180°	5S6.964.1Y	AF	AH			TF05		1.7	25	31	40	57	1.9	3.5
	5S7.044.1Y		AH				TF07	2.0	41	50	65	92	3.0	4.0
	5S7.114.1Y		AH	AL			TF07	2.0	60	73	94	133	4.4	6.0
	5S7.184.1Y			AL			TF07	2.0	89	109	141	199	6.5	7.0
	5S7.224.1Y			AL			TF07	2.0	111	136	175	248	8.2	7.5
	5S7.254.1Y			AL	AN		TF07	2.0	135	165	213	301	9.9	8.0

Rotating cleaning nozzle »XactClean® HP 2« **Series 5S6 / 5S7**

Spray			C	order no.				Narrowest		·	F1/:			Max.
angle				Con	nection			cross- section		/ water	[I/MIN	J	V water	tank diameter
	Type					1/2"	3/4"	Ø [mm]	p [b	ar] (p _m	_{ax} = 15	bar)		[m]
		3/8 BSPP	1/2 BSPP	3/4 BSPP	1 BSPP	slip-on	slip-on connection	[iiiiii]	2.0	3.0	5.0	10.0	at 5 bar [m³/h]	
270°	5S6.965.1Y	AF	АН			TF05		1.7	25	31	40	57	1.9	3.5
	5S7.045.1Y		АН				TF07	2.0	41	50	65	92	3.0	4.0
	5S7.115.1Y		AH	AL			TF07	2.0	60	73	94	133	4.4	6.0
	5S7.185.1Y			AL			TF07	2.0	89	109	141	199	6.5	7.0
	5S7.225.1Y			AL			TF07	2.0	111	136	175	248	8.2	7.5
	5S7.255.1Y			AL	AN		TF07	2.0	135	165	213	301	9.9	8.0
270°	5S6.966.1Y	AF	АН			TF05		1.7	25	31	40	57	1.9	3.5
	5S7.046.1Y		AH				TF07	2.0	41	50	65	92	3.0	4.0
	5S7.116.1Y		AH	AL			TF07	2.0	60	73	94	133	4.4	6.0
	5S7.186.1Y			AL			TF07	2.0	89	109	141	199	6.5	7.0
	5S7.226.1Y			AL			TF07	2.0	111	136	175	248	8.2	7.5
	5S7.256.1Y			AL	AN		TF07	2.0	135	165	213	301	9.9	8.0
360°	5S6.969.1Y	AF	AH			TF05		1.5	25	31	40	57	1.9	3.5
	5S7.049.1Y		AH				TF07	2.0	41	50	65	92	3.0	4.0
	5S7.119.1Y		AH	AL			TF07	2.0	60	73	94	133	4.4	6.0
	5S7.189.1Y			AL			TF07	2.0	89	109	141	199	6.5	7.0
	5S7.229.1Y			AL			TF07	2.0	111	136	175	248	8.2	7.5
	5S7.259.1Y			AL	AN		TF07	2.0	135	165	213	301	9.9	8.0

NPT threads on request.

Information on operation

Compressed air can be used only for a short time for blowing dry. Use above the recommended pressure will have a negative effect on the cleaning result and wear.

Information on slip-on connection

- Cotter pin made of stainless steel 316L included (Order no. 095.022.1Y.50.60.E [TF07], 095.013.1E.05.59 [TF05]).
- Depending on the adapter diameter, the flow rate may increase due to the leakage between the adapter and rotating cleaning nozzle.

Ordering example with FDA and (EC) 1935/2004 conformity.

All materials are suitable for contact with food.

+ Connection = Order no. 5S6.965.1Y = 5S6.965.1Y.AF Ordering example with ATEX approval. FDA and (EC) 1935/2004 conformity.

Unit group/Category/Zones:

⟨E⟩ | I 1G Ex h | IB T6...T3 Ga
 ⟨E⟩ | I 1D Ex h | IIC T85 °C...T190 °C Da

The code for the connection changes for the ATEX version with slip-on connection. Ordering example for 1/2" slip-on connection: 5S6.963.1Y.T1.EX

Ordering example for 3/4" slip-on connection: 5S7.043.1Y.T2.EX

+ Connection + ATEX = Order no. 5S6.965.1Y + AF + EX = 5S6.965.1Y.AF.EX

*

High impact tank cleaning machine **Series 5T2/5T3/5TB**

- Gear-controlled
- Particularly powerful solid jets
- Operating pressures up to 217 and 362 psi possible

Max. tank diameter:

5T2/5T3 -43 ft 5TB - 49 ft

Materials:

AISI 316 L, AISI 632, PTFE, PEEK, Zirconium oxide, EPDM, 32 RA surface finish is included with every material

Max. temperature:

5T2/5T3 302°F 5TB: 203°F

Recommended operating pressure:

75 psi, max.

Installation:

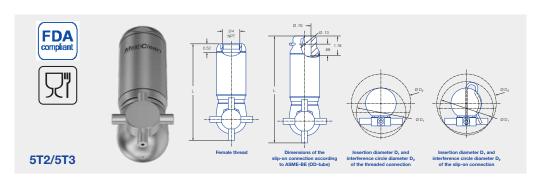
Operation in every direction possible

Filtration:

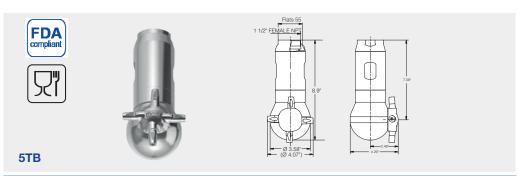
Line strainer with a mesh size of 0.2 mm/80 mesh

Bearing:

Ball bearing


Weight:

5T2/5T3 approx. 2.2 lb. 5TB approx. 8.8 lb.


Rotation monitoring sensor:

Sensor compatible, please ask for more information.

Spray	C	Ordering no.			Flov	v Rate				Dimens	ions [in]			
angle		Co	ode		(Gallons	Per Minut	e)							te i
	Type		3/4"-	p [psi] (p _{max} = 218 psi)				Fe	male thre	ead	Slip-	on conne	Max. tank diameter [ft]	
	3/4" NPT		Slip-on connection	30	75	5.0	at 75 psi [SCFM]	L	Ø D ₁	Ø D ₂	L	Ø D ₁	Ø D ₂	Σ σ
360°	5T2.849.1Y	BL	TF07	3.43	0.79	20	0.7	5.59	2.68	3.23	6.18	3.03	3.23	37.7
	5T2.969.1Y	BL	TF07	6.60	1.57	40	1.4	5.59	2.68	3.23	6.18	3.03	3.23	39.4
	5T3.029.1Y	BL	TF07	9.25	2.17	55	1.9	5.59	2.68	3.23	6.18	3.03	3.23	41.0
	5T3.089.1Y	BL	TF07	13.21	3.11	79	2.8	5.83	2.91	3.58	6.42	3.23	3.58	42.7

Spray Angle	Ordering no.	Φ	Number, Ø of nozzles		Max. tank	Max. pressure				
Aligic		Free Passage	(mm)	liters per minute		ı	ı	Ø	pressure	
,		(in.)		2 bar	30 psi	40 psi	75 psi	145 psi	(ft.)	(psi)
360°	5TB. 406. 1Y. BS	.236	4 x 6.0 mm	107	29	33	45	63	46	362
	5TB. 407. 1Y. BS	.236	4 x 7.0 mm	132	35	41	56	78	46	362
	5TB. 408. 1Y. BS	.236	4 x 8.0 mm	150	40	47	64	89	49	362

*

High impact tank cleaning machine **Series 5TM**

- Gear driven
- Very powerful solid jets
- Popular and proven design

Max. tank diameter: 79 ft

7011

Materials:

316L, 304 SS, 302 SS, PTFE, PEEK

Max. temperature:

5TM: 203°F/95°C

Recommended operating pressure:

75 psi

Installation:

Operation in every direction possible

Filtration:

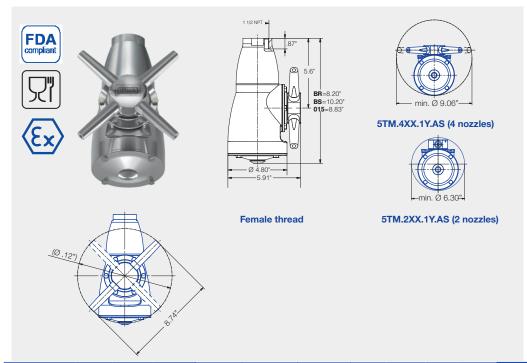
Line strainer with a mesh size of 0.2 mm/80 Mesh

Bearing:

Ball bearing and slide bearings

Weight: Appox. 16.5 lb.

Rotation monitoring sensor:


Sensor compatible, please ask for more information.

Our special mounting bracket provides the ability for the 5TM to reach the far ends of long horizontal tanks/ tankers. Mounting bracket part number: 099.164.17.00.00.0

Portable cart for easier transporting of your 5TM from tank to tank. The cart part number is M20.000.17.BR. For use with "BR" connection only.

Type	Ordering	no. Connectio	n	Free Passage (in.)	No. of Nozzles x		(Operating	Pressur	е	ank r [ft]
	1 ¹ / ₂ " Male NPT	1 ¹ / ₂ " Female NPT	1½" CL150 Flange		Diameter		40 psi	60 psi	80 psi	100 psi	Max. tank diameter [ft]
5TM. 208. 1Y	BR	BS	015	.314	2 x 8mm	Flow Rate	39 gpm	48 gpm	55 gpm	61 gpm	79
5TM. 209. 1Y	BR	BS	015	.354	2 x 9mm	Flow Rate	45 gpm	54 gpm	60 gpm	65 gpm	79
5TM. 210. 1Y	BR	BS	015	.394	2 x 10mm	Flow Rate	50 gpm	61 gpm	70 gpm	79 gpm	79
5TM. 211. 1Y	BR	BS	015	.433	2 x 11mm	Flow Rate	57 gpm	68 gpm	78 gpm	80 gpm	75
5TM. 406. 1Y	BR	BS	015	.236	4 x 6mm	Flow Rate	43 gpm	53 gpm	61 gpm	69 gpm	59
5TM. 407. 1Y	BR	BS	015	.276	4 x 7mm	Flow Rate	53 gpm	65 gpm	75 gpm	83 gpm	66
5TM. 408. 1Y	BR	BS	015	.315	4 x 8mm	Flow Rate	62 gpm	76 gpm	88 gpm	98 gpm	72
5TM. 409. 1Y	BR	BS	015	.354	4 x 9mm	Flow Rate	74 gpm	88 gpm	98 gpm	106 gpm	75
5TM. 410. 1Y	BR	BS	015	.394	4 x 10mm	Flow Rate	81 gpm	99 gpm	114 gpm	128 gpm	75

ATEX available upon request

Example Type + Conn. = Ordering no. for ordering: 5TM. 208. 17 + BR = 5TM. 208. 17. BR

QUALITY WITH A SYSTEM

Lechler products are used in a wide variety of sectors and applications. Which is why the products' requirements are often very specific to certain applications. We define the term "quality" as the extent to which our products fulfill our customer's individual requirements.

In order to do this we have been certified to internationally renowned certificates.

Certifications and Quality

- ISO 9001-2008 Certification
- DIN EN 10204 Inspection Certificate
- Classification according to Pressure Equipment Directive 2014/68/EU
- Declaration of Incorporation of partly completed machinery according to 2006/42/EC
- Declaration of Conformity of machinery according to 2006/42/EC
- ASME qualified welding procedure specifications
- Welding procedure specification DIN EN ISO 15609

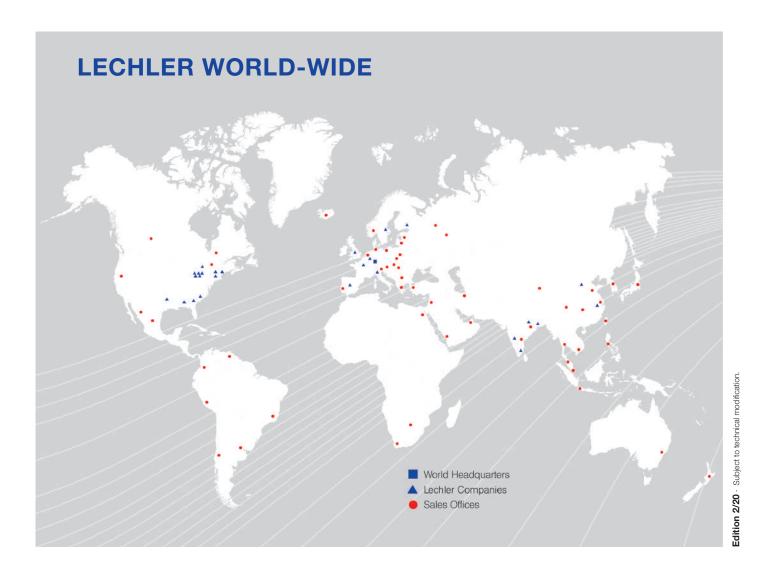
Code Compliance

- ASME B31.1 Power Piping Code
- Metallic industrial piping: DIN EN 13480
- Unfired pressure vessels: DIN EN 13445
- ASME B31.3 Process Piping Code
- Welder Performance Qualification Records per ASME BPVC Section IX
- Qualification test of welders: DIN EN 287

Testing

- ANSI and ASTM testing
- Non-destructive testing Penetrant testing: DIN EN ISO 3452
- Hardness
- Hydrostatic pressure test: Pressure Equipment Directive 2014/68/EU, DIN EN 13480-5 and DIN EN 13445-5
- Spray and flow testing
- Phase Doppler Anemometry (PDA) measurement system
- Magnetic particle inspection : DIN EN ISO 17638
- Positive Material Identification

Talk to us


Your requirements are the first step towards a solution. We are more than happy to help you solve your individual tasks. Tell us your objectives and we will take care of the solution. If the solution is not yet available, we will tailormake one for you. That is our promise.

ENGINEERING YOUR SPRAY SOLUTION

Lechler, Inc · Precision Nozzles · Nozzle Systems
445 Kautz Road, St. Charles, IL 60174 · Phone (800) 777-2926 · Fax (630) 377-6657 · info@LechlerUSA.com · www.LechlerUSA.com

ASEAN: Lechler Spray Technology Sdn. Bhd. · No. 23, Jalan Teknologi 3/3A · Taman Sains Selangor 1 · Kota Damansara, PJU 5 · 47810 Petaling Jaya · Malaysia · info@lechler.com.my Belgium: Lechler S.A./N.V. · Avenue Mercator, 6 · 1300 Wavre · Phone: +32 10 225022 · Fax: +32 10 243901 · info@lechler.be

China: Lechler Intl. Trad. Co. Ltd. · Beijing · Rm. 418 Landmark Tower · No. 8 Dong San Huan Bei Lu · Phone: +86 10 84537968, Fax: +86 10 84537458 · info@lechler.com.cn

Finland: Lechler Oy · Jäspilänkatu 18 · 04250 Kerava · Phone: +358 207 856880 · Fax: +358 207 856881 · info@lechler.fi

France: Lechler France, S.A. · Bât. CAP2 · 66 -72, Rue Marceau · 93558 Montreuil · Phone: +33 1 49882600 · Fax: +33 1 49882609 · info@lechler.fr

Germany: Lechler GmbH · PO Box 13 23 · 72544 Metzingen · Phone: +49 7123 962 · 0 · Fax: (49) 7123 962 · 444 · info@lechler.de

Great Britain: Lechler Ltd. · 1 Fell Street, Newhall · Sheffield, S9 2TP · Phone: +44 114 2492020 · Fax: +44 114 2493600 · info@lechler.com

India: Lechler (India) Pvt. Ltd. · Plot B-2 · Main Road · Wagle Industrial Estate · Thane (W) · 400604 · Phone: +91 22 40634444 · Fax: +91 22 40634498 · lechler@lechlerindia.com

Italy: Lechler Spray Technology S.r.l. · Via Don Dossetti, 2 · 20080 Carpiano (Mi) · Phone: +39 02 98859027 · Fax: +39 02 9815647 · info@lechler.acm

Spain: Lechler S.A. · Avda. Pirineos 7 · Oficina B7, Edificio Inbisa I · 28700 San Sebastián de los Reyes, Madrid · Phone: +34 91 6586346 · Fax: +34 91 6586347 · info@lechler.es

Sweden: Lechler AB · Kungsängsvägen 31 B · 753 23 Uppsala · Phone: +46 18 167030 · Fax: +46 18 167031 · info@lechler.se