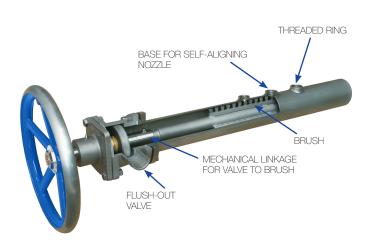
STAMM® SHOWER HEADERS

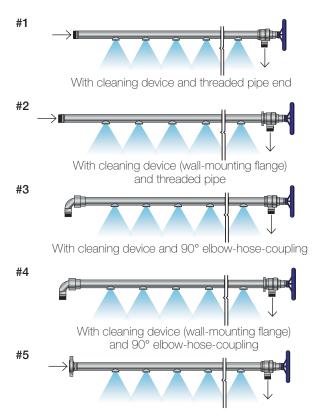
with built-in cleaning device

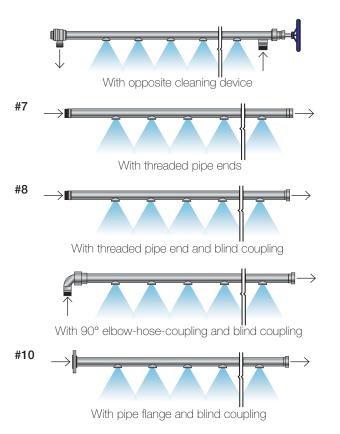
Engineered and manufactured by Lechler Inc. in the USA under license by the STAMM® Company in Germany, these shower headers with built-in cleaning device are recognized worldwide as the original "brush and flush" shower system.

Shower pipe and nozzles remain clog-free due to the unique flush system design. A simple turn of the handwheel sweeps contaminants away from the nozzle orifices and directs the debris down the flush-out valve. Since these showers eliminate costly down time for cleaning, they are especially cost-effective in applications subject to high fluid contamination. Some features of the self-cleaning


shower system are:

- Header pipe available in sizes from 11/2" to 6" in diameter.
- Contaminants flushed via special valve, preventing them from clogging orifices or reaching showered surface.
- System accommodates wide range of flow rates.
- Highly efficient, interchangeable nozzles are selfaligning.
- Systems are tailored to your specific application.


Refer to the next page for a selection of nozzles specifically designed for use in STAMM® showers.

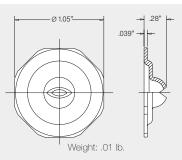

Typical applications:

- Cleaning of wires and felts
- Humidification
- Knock-off
- Lubrication

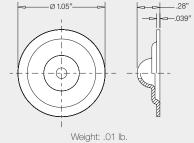
Standard shower models (Other configurations also available; note that models #7-10 have no cleaning device)

NOZZLES FOR STAMM® SHOWER HEADERS **Series 626 / 5SW**

Designed specifically for STAMM® shower headers, these nozzles can serve as replacements or to change the flow rate of an existing unit. Self aligning when used with STAMM® or Lechler bases. 316L SS stainless steel construction for long service life. Available in 75°, 60°, 30°, and 15° flat fans or 0° solid stream ("needle jet") versions.


Applications:

- For use on STAMM® showers
- Paper production
- Belt filter press cleaning in wastewater treatment



₹15°-75°

Notes: Also available upon request are: (1) nozzles with other flow rates and (2) solid stream nozzles (0°) with a ruby tip orifice. The number in the Equiv. Orifice Diam. column represents the Nozzle # and spray angle stamped on each nozzle; e.g., the nozzle stamped 1.0 / 60 refers to 626.364.1F.37. Lechler has blank shower nozzles with no orifices which can be used on STAMM® showers when a particular nozzle opening needs to be blocked. The part number for this blank nozzle is 006.261.1F.00.

Spray	Ordering number	Equiv. Orifice Diameter	√ water [gal/min] p [psi]						
angle	Material 316L SS stainless steel	(mm)							
			40	60	100	150	250	500	1000
75°	626. 485. 1E. 37	1.5	.50	.61	.79	.96	1.2	1.8	2.5
, 0	626. 565. 1E. 37	2.0	.77	.95	1.2	1.5	1.9	2.7	3.9
	626. 645. 1E. 37	2.5	1.2	1.5	2.0	2.4	3.1	4.4	6.2
	626. 725. 1E. 37	3.0	2.0	2.4	3.1	3.8	4.9	6.9	9.8
60°	626. 364. 1E. 37	1.0	.20	.24	.31	.38	.49	.69	.98
	626. 404. 1E. 37	1.2	.31	.38	.49	.60	.77	1.1	1.6
	626. 464. 1E. 37	1.5	.50	.61	.79	.96	1.2	1.8	2.5
	626. 564. 1E. 37	2.0	.77	.95	1.2	1.5	1.9	2.7	3.9
ļ.	626. 644. 1E. 37	2.5	1.2	1.5	2.0	2.4	3.1	4.4	6.2
	626. 724. 1E. 37	3.0	2.0	2.4	3.1	3.8	4.9	6.9	9.8
	626. 804. 1E. 37	4.0	3.1	3.8	4.9	6.0	7.8	11.0	15.5
-	626. 884. 1E. 37	5.0	4.9	6.0	7.8	9.6	12.3	17.4	25.0
-	626. 964. 1E. 37	6.0	7.8 9.8	9.5	12.3	15.0	19.4	27.0	39.0
	627. 004. 1E. 37 627. 044. 1E. 37	7.0	12.4	12.0 15.2	15.5 19.6	18.9 24.0	24.0	35.0 44.0	49.0 62.0
30°	626. 362. 1E. 37	1.0	.20	.24	.31	.38	.49	.69	.98
	626. 482. 1E. 37	1.5	.50	.61	.79	.96	1.2	1.8	2.5
	626. 562. 1E. 37	2.0	.77	.95	1.2	1.5	1.9	2.7	3.9
	626. 642. 1E. 37 626. 722. 1E. 37	2.5	1.2 2.0	1.5 2.4	2.0	2.4 3.8	4.9	4.4 6.9	6.2 9.8
ŀ	626. 802. 1E. 37	4.0	3.1	3.8	4.9	6.0	7.8	11.0	15.5
-	626. 882. 1E. 37	5.0	4.9	6.0	7.8	9.6	12.3	17.4	25.0
15°	626, 361, 1E, 37	1.0	.20	.24	.31	.38	.49	.69	.98
15	626. 561. 1E. 37	2.0	.77	.95	1.2	1.5	1.9	2.7	3.9
	626. 721. 1E. 37	3.0	2.0	2.4	3.1	3.8	4.9	6.9	9.8
0°	5SW. 300. 1E. 00	0.7	.09	.11	.14	.17	.22	.31	.44
	5SW. 320. 1E. 00	0.8	.13	.15	.20	.24	.32	.45	.63
	5SW. 340. 1E. 00	0.9	.15	.19	.25	.30	.39	.55	.77
	5SW. 360. 1E. 00	1.0	.20	.24	.31	.38	.49	.69	.98
	5SW. 390. 1E. 00	1.2	.31	.38	.49	.60	.77	1.1	1.6
	5SW. 460. 1E. 00	1.5	.50	.61	.79	.96	1.2	1.8	2.5
	5SW. 540. 1E. 00	2.0	.77	.95	1.2	1.5	1.9	2.7	3.9
	5SW. 620. 1E. 00	2.5	1.2	1.5	2.0	2.4	3.1	4.4	6.2
ļ	5SW. 680. 1E. 00	3.0	2.0	2.4	3.1	3.8	4.9	6.9	9.8
	5SW. 780. 1E. 00	4.0	3.1	3.8	4.9	6.0	7.8	11.0	15.5
	5SW. 860. 1E. 00	5.0	4.9	6.0	7.8	9.6	12.0	17.4	25.0

AUTOMATIC CLEANING DEVICE AND OSCILLATORS FOR STAMM® HEADERS

Part number **Description** Stroke length **Shower size**

10.900 **Automatic Cleaning Device**

Automatic regular cleaning of nozzles at programmable intervals; existing showers can be retrofitted with this device.

N/A

All sizes

10.200 E

Oscillator with electromechanical crank drive for side-to-side movement by a sliding block and axial guide rail. Non-adjustable 200 mm

10.010 LE-R Oscillator

Oscillator with electromechanical gear motor that rotates a double ball screw spindle which converts rotation into linear stroke movement.

2" to 3":

206.4 mm or 301.4 mm 1-120 mm/min

4" to 6":

203.2 mm or 304.2 mm

One size for

2" to 3" diameter

One size for 4" to 6" diameter

10.020 EC Oscillator

Oscillator with electromechanical step motor with a planetary gear reducer to drive a ball screw spindle.

Infinitely adjustable 1-200 mm 1-300 mm (optional) 2" to 6"

Part number	Description	Stroke length	Shower size
		3	

10.094 Oscillator

Infinitely adjustable 1–200 mm 1–300 mm (optional) 1-500 mm (optional) 2" to 6"

Oscillator with oil-hydraulic drive with electronic oil flow control for automatic adjustment of stroke speed.

Infinitely adjustable 1–200 mm 1–300 mm (optional) 1-500 mm (optional) 2" to 6"

Wear-resistant bearing made of stainless steel; installs in any position and fits all drive alternatives.

N/A

